
Shields Up! Software Radiation Protection for
Commodity Hardware in Space

Haoda Wang

Columbia University

haoda.wang@columbia.edu

Steven Myint

Jet Propulsion Laboratory

California Institute of Technology

steven.myint@jpl.nasa.gov

Vandi Verma

Jet Propulsion Laboratory

California Institute of Technology

vandi.verma@jpl.nasa.gov

Yonatan Winetraub

Aptos Orbital

yonatan@aptosorbital.com

Junfeng Yang

Columbia University

junfeng@cs.columbia.edu

Asaf Cidon

Columbia University

asaf.cidon@columbia.edu

Abstract
Exponentially-declining launch costs have led to an ex-

plosion of inexpensive satellites launched to space, often

equipped with off-the-shelf chips. These chips, however, lack

hardware radiation protection, leaving them vulnerable to

space radiation. We thus design Radshield, a software sys-

tem protecting against the two most ubiquitous and costly

radiation fault scenarios: (a) radiation-induced short-circuits

that lead to permanent hardware failure; and (b) radiation-

induced transient charges that result in single-bit silent data

corruption (SDC). Radshield counters these failure scenarios

with two components. First, it uses a short-circuit detector

that can detect tiny increases in the device’s current draw

by estimating the normal current draw when resource uti-

lization is low. Second, it duplicates the execution of space-

craft workloads in a CPU and memory-efficient manner, and

catches SDCs even when they affect the CPU’s pipeline or

cache. In our experiments, we show Radshield is very ef-

fective at preventing both errors, and is 1.4−35.5× more

power-efficient than the state-of-the-art protection mecha-

nisms in detecting SDC. Radshield is deployed on missions

in low-earth orbit and in deep space.

“The 9000 series is the most reliable computer ever made.
No 9000 computer has ever made a mistake or distorted
information. We are all, by any practical definition of the
words, foolproof and incapable of error.”

HAL, 2001: A Space Odyssey

CCS Concepts: • Computer systems organization→ De-
pendable and fault-tolerant systems and networks; •
Hardware→ Transient errors and upsets; • Applied com-
puting → Avionics.

Keywords: satellite computing, fault tolerance, radiation

hardening

1 Introduction
The last decade has seen an explosion in commercial and

public interest in space exploration, driven by exponentially-

decreasing launch costs, depicted in Figure 1. The cost of

0
10000
20000
30000
40000
50000
60000
70000

1981 1989 1997 2010 2018

Launch Cost to LEO

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000

1980 1990 2000 2010 2020

Active Satellites in LEO

Figure 1. Cost of launching 1kg to LEO on popular launch

vehicles, compared to active LEO satellite count over time.

launching a kilogram to low-earth orbit (LEO) in 1981 was

$88K
1
on the Space Shuttle has since dropped to just $1.4K on

SpaceX’s Falcon Heavy today [1]. Private and government or-

ganizations are launching spacecraft at a rapidly-increasing

rate [2], aiming to create large satellite constellations that

support a wide variety of use cases from Internet connec-

tivity [3–5], Earth imaging [6, 7], blockchain processing [8,

9], to wireless power delivery [10]. Taking advantage of de-

creased launch costs, LEO satellite constellations like Starlink

have proven capable of providing significant performance

and latency improvements over large, expensive satellites

in higher orbits [11], attracting significant interest in the

systems and architecture research communities [11–17].

Minimizing the unit cost of the thousands of satellites in

each constellation is a key concern for operators [18]. To

operate under the harsh space environment, missions tradi-

tionally use costly specialized hardware that can withstand

ionizing radiation. Due to their specialized nature and their

redundant hardware mechanisms, these chips are decades

behind commodity ones in terms of their computational ca-

pabilities. For example, state-of-the-art radiation-hardened

chips currently under development “boast” performance on

the order of GFLOPS [19], while even low-power mobile

chips today are capable of TFLOPS of compute [20].

Moreover, due to bandwidth limitations at ground sta-

tions [3, 4, 6–9, 21], there is increased demand to run sophis-

ticated computations locally onboard the spacecraft [22, 23].

1
Normalized to 2023 dollars.

1

https://orcid.org/0000-0001-9029-8071

H. Wang et al.

However, the computational requirements of such tasks can-

not be met with existing radiation-hardened hardware [24].

Thus, many missions have started to deploy commodity

devices without any radiation protection [25–27]. For ex-

ample, many low-cost CubeSats use Linux on off-the-shelf

boards like the Raspberry Pi for flight control [26]. Even

SpaceX and NASA are adopting off-the-shelf hardware for

their aircraft, with the SpaceX Falcon 9 rocket running Linux

on x86 CPUs [26] and the Ingenuity Mars Helicopter run-

ning Linux on a Snapdragon CPU [27]. These devices are

not radiation-hardened, and are thus vulnerable to radiation-

induced errors such as silent data corruption (SDC) and hard-

ware overheating that we examine in §2.

To this end, we introduce Radshield, a system that uses

software mechanisms to protect commodity hardware com-

ponents from radiation effects while minimizing the per-

formance penalty. The work on Radshield presents a col-

laborative effort between two spacecraft operators and aca-

demic researchers. Radshield protects against the two most

common and costly error scenarios: single-event latchups
(SELs), radiation-induced localized short-circuits in the de-

vice, which cause the device to overheat over time, eventually

leading to its malfunctioning; and single-event upsets (SEUs),
single-bit errors that can cause SDCs or crashes.

Previous work in mitigating these errors approach the

software and computer system they are protecting as a black

box. For example, SEL detection relies solely on the current

draw to try and detect when the current draw reaches beyond

a threshold [28–30]. By treating the system as a black box,

these approaches experience very high false negative or false

positive rates, since they are oblivious to natural variation

in current draw, for example due to high CPU consumption

in an application that increases the power draw.

The current approach to addressing SEUs is simply run-

ning the entire computation 𝑅 times sequentially. Diverging

results between runs indicates a potential SEU. However,

this is computationally wasteful and multiplies the device’s

energy consumption and heat generation. Doing so also

stresses the limited thermal and power envelopes of these

satellites, affecting their productivity and uptime.

Instead, we show that with a white-box approach rely-

ing on software-visible metrics into system performance,

Radshield can provide much more efficient error mitigation.

Radshield consists of two primary components. Idle Latchup
Detector (ILD) is a high-fidelity detector for SEL events. It re-

lies on the simple yet powerful observation: since SEL events

often trigger very small changes in the system’s current draw,

the only reliable time to observe the current draw change

is when the system is idle. Therefore, ILD uses OS-visible

performance counters to automatically determine when the

system is naturally idle, and when it is, it uses performance

counters to detect whether an SEL has occurred with mini-

mal overhead, using a lightweight ML model.

Radshield’s Efficient Modular Redundancy (EMR) compo-

nent efficiently protects against SEU events. EMR is inspired

by existing approaches which run the same computation

several times [31]. Unlike existing approaches, it does so in

parallel rather sequentially, relying on the idea that opera-

tors are adopting multi-core commodity CPUs. However, one

cannot naively run the computation in parallel, as redundant

computations may access the same memory location in a

shared cache. If radiation corrupts the shared cache, it would

affect all redundant runs and go undetected. To solve this

problem, EMR carefully and automatically parallelizes the

application to avoid the scenario where parallel tasks store

data in shared caches at the same time.

In over 960 hours of testing using real-world workloads

on a ground-based testbed, ILD was able to catch all induced

SELs, and has a false positive rate of only 0.02%, with a

runtime overhead of only 2% (§4.1). Similarly, EMR achieves

the same reliability as state-of-the-art mitigations with an

average of 63% less runtime overhead and 60% less energy

consumption. Radshield’s SEL mitigation is actively being

tested on LEO SmallSats, and the SEU mitigation is deployed

onboard a spacecraft on the surface of Mars (§5). We will

open source Radshield’s code and experiments.

2 Background and Related Work
Since the first discovery of the Van Allen belts in 1958 [32],

radiation errors were known to be a factor in spacecraft sys-

tem failures [33]. These errors are caused by high-energy

ionizing particles hitting computer chips, depositing an elec-

trical charge onto the chip where it is hit and displacing the

silicon lattice. This deposited electrical charge may then be

interpreted as a digital 1 signal where the particle strikes,

while the lattice displacement can cause changes in the ar-

rangement of the circuit within the chip.

Due to the potentially mission-ending consequences of

a radiation error striking at the wrong time, the effects of

radiation at various wavelengths and intensities on electron-

ics have been extensively studied in the space exploration

community [34]. From our own and others’ operational ex-

perience, two types of radiation errors are of primary con-

cern to spacecraft operators [30, 35, 36]. First, single-event

latchups (SELs) cause hardware overheating and permanent

chip damage. Second, single-event upsets (SEUs) manifest as

bit flips or spurious signals that can cause SDC. This section

describes these errors, the state-of-the-art mitigations, and

our operators’ experiences with them.

Incidence of radiation errors disruptive to spacecraft
operations The presence of radiation errors have significant

implications on the design and operation of spacecraft mis-

sions [33]. Radiation-induced latchups have been observed

bymultiple spacecraft missions over the past several decades,

causing irreversible harm to hardware on spacecraft [37–

39]. In fact, multiple commodity computers onboard one of

2

Shields Up!
Software Radiation Protection for Commodity Hardware in Space

Figure 2. Current draw of a spacecraft navigation workload

running on a Raspberry Pi Zero 2 W, before and after a

SEL. Blue points represent nominal current draw, while red

points occur under SEL. The black line represents an example

threshold at 4A, past which the device will power cycle.

our SmallSats have been damaged by an SEL, rendering the

entire satellite useless, incurring a significant financial loss.

SEUs have also been shown to be disruptive to spacecraft

operations. Multiple flight software errors causing data loss

on a Mars rover have been traced to such upsets and has

put a pause on multiple days of rover operations [36]. While

SEUs leading to software crashes are a nuisance, they can

typically be easily dealt with by simply rebooting the device.

More alarmingly, SEUs can silently corrupt onboard data,

leading to malfunctions or faulty data. Indeed, commod-

ity hardware onboard the Ingenuity Mars helicopter experi-

enced eight SEU-induced SDCs [36]. In our testing, a single

SEU can also drop a MLmodel’s inference accuracy from 85%

to 10% [40]. Even worse, SEUs during AES encryption can

leak the encryption key to attackers [41], a major security

risk. We now provide more details about both types of errors.

2.1 Single-Event Latchups
The residual charge left by radiation particles can change

transistor structures and cause a localized short-circuit known

as SELs [42]. SELs generate a large concentration of energy

on a few gates [43], causing excess heat that cannot be dissi-

pated in the vacuum of space. This causes a sharp increase

in the temperature around these gates, which will damage

the chip if left unchecked [38]. Fortunately, this error can be

instantly fixed by simply power cycling the affected IC. Note

that power cycles are not equivalent to a reboot, as reboots

may not completely clear out the SEL’s residual charge.

Classically, SELs present as large, 1A order-of-magnitude

increases in current [44]. However, the shrinking process

nodes used for newer computers have introduced the pos-

sibility of micro-SELs, which are SELs that might increase

much smaller increases current draw. For example, one pre-

vious work showed the possibility of SELs causing just a

0.07A jump in current draw on a 7nm process node [45].

Current approaches State-of-the-art approaches to de-

tecting these small SELs treat the hardware as a black box,

and simply use time-series analysis on current draw to de-

tect latchups [30, 46, 47]. However, a 0.07A SEL-induced

additional current draw [45] is negligible compared to cur-

rent variations in modern CPUs due to power scaling. For

example, normal current draw ranges from 1.7–4.5 A on a

commodity ARM SoC, a variance over two orders of magni-

tude higher than an SEL. This is illustrated in Figure 2, where

a CPU under load is shown with and without simulated SEL

conditions. Even under SEL, the threshold of 4A is never

reached, while high compute activity before the SEL crosses

the threshold. Thus, a static current threshold is not sensitive

enough to SELs, incurring either too many false positives or

false negatives.

More sophisticated methods use ML models to detect SEL-

induced current spikes [30], but again treat system resources

(i.e. CPU, memory bandwidth consumption) as a black box.

Thus, these models to have a high misdetection rate when ap-

plied to CPUs (§4.1), as they cannot account for system tasks

(e.g. log rotation, interrupts) that also cause current spikes.

Current state-of-the-art SEL mitigations are thus inadequate

for detecting non-obvious latchups, and has led to (often

fatal) SEL-induced damage onboard many satellites [33].

2.2 Single-Event Upsets
The residual charge left by ionizing radiation can also

cause SEUs, or a change the logical state of a circuit [48].

Most SEUs result in a bit flip in memory or a spurious sig-

nal traveling down a compute pipeline [42]. Previous work

shows that SEUs can cause SDC, crashes, and hangs [49].

We observe that for data at rest, commodity storage used

on spacecraft computers featuring built-in single-error cor-

recting and double-error detecting (SECDED) error-correction

codes (ECC), which provide ample protection from SEUs.

Manymodern spacecraft SoCs also haveDRAMwith SECDED

ECC, minimizing the chance of SDC for data in memory as

well. However, commodity compute pipelines and caches

lack any ECC mechanisms, even for single-bit errors. Thus,

the compute pipeline and CPU cache are the primary source

of application-visible failures in a commodity space com-

puter, and are therefore our focus.

Experimental observations of SEU frequency Simula-

tions using state-of-the-art analysis analysis [50] show that

SEUs are expected to flip 1.6 bits per day day on the Snap-

dragon 801, a commodity SoC used onboard the Persever-

ance Mars rover [27]. During regular operations, a radiation-

hardened RAD750 on the rover records around one SEU each

Mars day (24.7 hours), and at least 4 SEUs caused system

crashes on the Snapdragon 801 in the past 800 Mars days.

Current approaches The state-of-the-art approach to

protect against SEUs treats the computer and program as a

black box, and simply relies on running a program multiple

3

H. Wang et al.

times [51]. This is done through triple modular redundancy
(3-MR), which allows for the machines to do a tiebreaker vote

if the results differ [35, 52, 53]. Another approach involves

storing checksums of critical memory values, which are re-

computed every timememory is written to and verified every

time the memory location is read [54–57]. Both approaches

are computationally expensive and draw significant power.

While some work has been done in enabling parallel mul-

ticore 3-MR [31, 58], these approaches focus on control flow

correctness instead of data flow. However, as data flow may

not depend on control flow, these approaches may miss some

SEUs. Furthermore, data with the same memory address may

be fetched from unprotected intermediate caches, meaning

SEUs in cache could affect multiple executions.

An alternative approach relies on application-specific mit-

igations, such as those for deep learning [59, 60], PDE solv-

ing [55], and numerical analysis [61]. While these methods

are far more effective and efficient than 3-MR or checksum-

ming, they require significant developer time and effort to

implement, and protects only a single class of compute. Oper-

ators will also need a more generalized approach to support

the wide array of compute tasks onboard spacecraft.

2.3 Radiation Failures on Earth
Most SEL-inducing radiation particles are either deflected

by Earth’s magnetic field or absorbed by its atmosphere [38],

and are thus are not a concern for datacenters on Earth. SEUs

do occur on Earth [62], albeit much more rarely, at a rate of

2.3 · 10−12 per bit per day at sea level, a 700,000× lower rate

than in space. However, as datacenters employ tens of thou-

sands of servers, they do likely cause small disturbances in

datacenter environments. Indeed, some recent work investi-

gates failures in the cache and execution pipeline of cores of

datacenter servers, which might be traced to SEUs [63–65].

However, the high cost of 3-MR coupled with the rarity of

SEUs on Earth means such techniques are rarely deployed

in datacenters. Byzantine fault tolerance systems are com-

monly used in datacenters to address such failures [66], but

these approaches require replicas and a decentralized system,

and thus do not work in a single-processor environment. Ap-

proximate computing introduces some radiation tolerance

to programs [67], but are not suitable for critical processes

such as flight control on spacecraft.

3 Design and Implementation
We now present the design of Radshield, which takes

advantage of software-visible OS metrics to efficiently and

accurately detect and mitigate radiation errors (Figure 3).

Radshield is divided into two components, each targeting

one type of radiation error, which work together to increase

the overall lifetime of the hardware (and the spacecraft).

Design Principles Our design is guided by the following

principles.

StorageDRAM

L1

L1

L1CPU

CPU

CPU

L2

Idle
Latchup
Detector

ECC
(Optional) ECC

Job JobJob

Split program
into jobs Efficient

Modular
Redundancy

Program

Replicate jobs
to multiple cores

Flush caches

Reliablity
Frontier (with
ECC DRAM)

Reliablity
Frontier (no
ECC DRAM)

Monitor and
inject quiescence

Figure 3. System design of Radshield. Components are pro-

tected by hardware (yellow) or software (green). A red line

denotes potential reliability frontiers.

1. Runs on unmodified Linux. To facilitate deployment

on standard commodity hardware, Radshield should use a

userspace software-only design that can be run on standard

OSes such as Linux. As many commodity chip suppliers pro-

vide support only for common OSes (e.g. Linux, VxWorks),

engineering and compliance needs often require spacecraft

operators to use unmodified Linux on their target computers.

2. Focus on userspace errors.We focus on protecting

against errors in the computational pipeline in userspace,

and not in the kernel, since the types of applications running

in space spend very little time in kernel space. This is because
space workloads are CPU-intensive, and spacecraft run few

processes at a time, requiring few context switches, thus

incurring low kernel overhead. In all of the experiments

we ran in §4, we found that the amount of time spent in

kernel space is ∼0.01% of the total runtime. Furthermore,

spacecraft operators are reluctant to touch kernel code, as

modifying the kernel can cause unrecoverable boot errors in

space. To minimize the chance of disruption from a kernel

SEU, Radshield is pinned to specific threads with maximum

priority and uses as few kernel calls as possible. Given these

operational restrictions, Radshield is a best-effort mitigation

that minimizes risk from the most vulnerable operations in

spacecraft compute.

3. Efficiency. As power is scarce onboard spacecraft, Rad-
shield should be as efficient as possible, and must incur min-

imal runtime and power usage overhead on applications. As

radiation hits the chip randomly and uniformly, running

faster with a smaller memory footprint is also correlated

with lower risk of failure [54]. Our operators also tend to use

commodity hardware as a way to offload expensive compute

operations from hardened primary flight computers [68].

Thus, we focus on minimizing runtime while ensuring the

correctness of the computation.

4. Immediately deployable. Radshield should require

little integration effort from developers and operators, and

support a wide range of spacecraft workloads.

4

Shields Up!
Software Radiation Protection for Commodity Hardware in Space

Target Program Scheduler
Control Linear

Model
Perf Info Linux kernelProcessed

Perf Info Logger

Figure 4. Software design of Radshield’s ILD component.

Per-core instruction Per-core Per-core

completion rate branch miss rate CPU frequency

Per-core bus Per-core Disk read and

cycle rate cache hit rate write IO count

Table 1. List of metrics used in ILD’s linear model.

3.1 ILD: White-Box SEL Detection
The SEL mitigation system of Radshield is ILD (Figure 4),

which detects latchups using current draw and system met-

rics that are available to the OS, and triggers reboots when

an SEL is detected. ILD uses software-available counters to

estimate the computer’s current draw and compare it with

the real, measured current draw, attaining far more accurate

SEL predictions than state-of-the-art techniques. Our main

insight is that to increase prediction accuracy, we detect

SELs only when the spacecraft is in quiescence, where no
workloads are running. We observe that quiescent periods

occur frequently in spacecraft, which run computations very

intermittently, due to intermittent communications with the

ground. In case such quiescence has not occurred naturally,

ILD actively injects short idle periods during long-running

workloads.

False negatives vs. false positives State-of-the-art thresh-

olding solutions are currently tuned for SELs with around

1A of additional current draw. However, previous work on

modern process nodes show that SELs can draw as little

as 0.07A of additional current [45]. Thus, we aim to detect

unexplained increase in current draw at this magnitude. We

note that the cost of a false negative (losing the spacecraft)

far outweigh the cost of a false positive (a spurious reboot),

so our first-order goal will be to minimize false negatives.

Detection time granularity Flight experiments show

that a CPU under SEL takes around five minutes to be dam-

aged by heat. Thus, we set our configurable detection win-

dow for SELs to three minutes by default, which accounts for

false negatives or extraordinary situations where the thermal

headroom may be lower. The naive solution to this issue will

be to simply reboot every five minutes, which guarantees

that any potential SEL will be cleared. However, such an

approach will also prevent long-running jobs from finishing

in a timely manner, making this naive solution untenable.

Current monitoring Most modern spacecraft power sup-

plies already include a device which provides per-component

current draw and voltage information. ILD uses this device to

0 2 4 6 8
Time (microseconds) 1e7

0

200

400

600

800

1000

1200

1400

1600

In
st

ru
ct

io
ns

 p
er

 u
s

0

2

4

6

8

10

Cu
rre

nt
 (A

m
pe

re
s)

Instruction Rate
Frequency
Current Draw

Figure 5. Current draw of a matrix multiplication workload

overlaid on CPU frequency and instruction completion rate

on a Raspberry Pi Zero 2 W. This experiment cycles between

using 0-4 CPUs at increasing frequency steps of 100MHz,

and shows a 99.7% correlation between current draw and

CPU usage in a CPU-heavy task.

measure current directly, rather than relying on CPU coun-

ters. This is because CPU counters do not actually measure

current draw, but instead use a pre-programmed multiplier

of the power state and the voltage to report a current es-

timate. These CPU counters are thus useless for detecting

SEL-induced current draw, which do not affect CPU voltages.

Using power consumption to detect SELs As previous

work in detecting anomalous power behavior relies on en-

ergy usage rather than current draw, we must make a dis-

tinction between these indicators. Since energy usage is the

integral of current draw times voltage, subtle increases in

current draw may be overshadowed by noise in the voltage

readings from CPUs switching between power states. En-

ergy usage is also often reported by CPU counters, which as

explained above do not actually measure current draw.

OS-visible metrics to estimate current draw As shown

in Figure 5, compute activity can be measured with CPU per-

formance counters, such as cycles elapsed and instructions

completed per measurement interval. These performance

counters are readily-accessible to userspace programs run-

ning on Linux.

Armed with this observation, we select a set of perf coun-
ters, listed in Table 1, to represent per-core compute load.

These counters were chosen by first creating a random forest

to model current draw, and then selecting themost important

features in the resulting random forest model. We found that

the instruction completion rate, bus cycle rate, and CPU fre-

quency were by far the most correlated with the computer’s

total current draw. Similarly, the branch miss and cache hit

rates reflect DRAM current draw, and the disk read/write IO

reflects the hard disk’s current draw. ILD thus collects these

metrics once every millisecond.

5

H. Wang et al.

Spacecraft compute load patterns Spacecraft tend to

stay in an quiescent state for the vast majority of the time [22,

69, 70], which we define as the target application not running

or suspended, while normal OS or housekeeping tasks are

still being run. This is because real-world spacecraft tend

to work in bursts due to the unpredictable and short com-

munication windows in space [71]. After each “burst,” the

spacecraft returns to idle until the next set of commands are

received at the next communication window [72, 73].

Only detecting SELs during quiescence As discussed

previously in §3.1, SELs may be very hard to detect at high

CPU loads due to high variance in current draw. ILD ad-

dresses this issue by recording system metrics and detecting

SELs only when the CPU is quiescent. As described in §5,

we use CPU load to determine when the system is quiescent.

Applications may also signal to ILD when they are no longer

processing data and the system is quiescent.

This schemeworks consistently since systemmaintenance

tasks tend to be short and require much less compute than

the payload software, so quiescent current draw tends to

stay relatively constant compared to during the workloads.

For example, the standard deviation during the workload

shown in Figure 2 is 0.96 A, compared to just 0.14 A during

quiescence. This property holds even after heavy workloads

are run, which matches how CPUs work at the architectural

level: as current draw is solely determined by the pipelines

in use, a (correctly functioning) CPU will not have residual

current draw from past computations.

Injecting quiescent time during long jobs To provide a

clean measurement environment for the prediction model

during long-running jobs, ILD injects three-second “bubbles”

of quiescence that temporarily pauses active processes. These

bubbles ensure that SELs can be detected even if they occur

during a workload. If no SEL is detected during a bubble,

ILD institutes a pause period of three minutes, where no

bubbles are injected. Thus, the worst-case overhead adds a

three-second quiescence segment to every 180 seconds of

compute, which is a 3 ÷ 180 = 2% increase in runtime.

Training a model to detect SELs Initially, we tried using

classification algorithms such as naive bayes and random

forest on OS metrics to sort between nominal and SEL states,

but these proved to be computationally expensive and im-

precise. In the end, we adopted a simple linear model which

was both efficient and accurate. This model is trained on

quiescent data including instruction rate, CPU frequency

and cycles elapsed, bus cycles elapsed, branch miss ratio,

cache hit rate, and R/W IOs issued to disk.

Satellite operators typically test programs on an Earth-

based identical copy of the hardware onboard a satellite,

which allows for ILD to be trained before the satellite is

launched. The linear model’s predictions are then compared

to the real-world satellite’s current draw, and a running av-

erage difference is recorded. We experimentally determined

that a >0.055A average difference between real and predicted

currents for more than three seconds was an ideal threshold

for flagging a potential SEL and rebooting. Specifically, a dif-

ference between 0.04A to 0.08A was tested against simulated

datasets in 0.005A increments, and 0.055A presented no false

negative rates while minimizing false positive rates.

Accounting for current spikes ILD must differentiate

between SELs, which incur a permanent increase in current

draw, and compute-induced transient spikes which only last

for a fewmicroseconds, shown in Figure 5. To decrease the ef-

fects of these transient spikes, ILD tracks a rolling minimum

current across the 250𝜇s before and after the measurement.

This lowers the standard deviation of current recordings

during quiescence from .14A to .02A, allowing us to more

effectively target differences of .07A. While this incurs a de-

lay of 2.5ms for each measurement, this delay still orders of

magnitude smaller than our three minute time window for

detecting a SEL.

Larger current spikes on the order of 1A are already ad-

dressed by additional thresholding circuitry available on

most modern spacecraft power supplies in use today [74].

3.2 EMR: Efficient SEU Detector
We now describe EMR, a runtime and programming model

for space applications written in C++, which automatically

manages and optimizes 3-MR and checkpointing.

Example application We observe that typical workloads

run on spacecraft, such as encryption or image processing,

tend to run the same computation across different subsets

of a dataset. As a guiding example, we use a global local-

ization image processing algorithm currently run onboard

a real-world spacecraft, which determines the location of

an object [68]. To do so, every possible N-by-N pixel sub-

set of a large global map is matched against a local map, as

shown in Figure 6. The most optimal matching is then used

to determine a spacecraft’s likely location.

Sequential vs. parallel redundancy An advantage of

running in parallel on one device is that it can reduce the

application’s overall runtime, thus reducing the time window

for an SEU to strike. However, consider the image processing

example: if two cores run in parallel on overlapping data (e.g.

one of them reads block 3 and the other block 4), the shared

part of the two blocks might be loaded in their shared L2

cache. If an SEU impacts the L2 cache, the corruption may

propagate to both cores, causing both to produce the same

incorrect output, while the SDC goes undetected.

To avoid this issue, EMR takes advantage of data access

patterns of common algorithms onboard spacecraft to sched-

ule computations more efficiently than 3-MR. EMR ensures

that data currently being processed by a particular executor

6

Shields Up!
Software Radiation Protection for Commodity Hardware in Space

Figure 6. An image of Mars’ Jezero Crater, with examples

of subimages processed by our use case overlaid.

typedef pair <size_t , void *> DTSSInput;

struct InputData {
vector <DTSSInput > inputs;
DTSSInput output;
bool operator ==(InputData& b);

};

dtss_compute(unordered_set <InputData *> dataset ,
void (* processor)(InputData *));

Figure 7. Snippets of EMR’s user API. The developer pro-

vides InputData structs and the job processing function, and
dtss_compute automates scheduling and execution.

is read independently from an ECC-protected source, pro-

viding the same reliability as 3-MR with a single computer.

Dividing compute into jobs and jobsets EMR requires

an algorithm which runs the same computation on multiple

subsets of the input data. In our global localization use case,

the algorithm runs on every possible cropping of the image,

shown as blocks in Figure 6. Each sub-image is a dataset, a
subset of the data used by one computation. As shown in

Figure 7, a developer using EMR specifies datasets as a set of

memory regions each computation uses as input (Figure 8),

which EMR then automatically replicates as needed.

In EMR, the computation itself is expressed as a job, which
describes a single run of the target algorithm on one dataset.

To better manage conflicts, each job is bound to a core, and as

such each dataset has three jobs associated with it. Therefore,

each dataset would have three associated jobs, one per CPU.

The developer expresses the job as a function, and EMR

automatically handles scheduling these jobs.

To maximize parallelism, EMR finds sets of jobs that can

run simultaneously without reading data directly from non-

ECC protected memory (e.g. the CPU cache). For example,

blocks [5,6,7,8] do not overlap and can be accessed simulta-

neously. On the other hand, EMR cannot schedule jobs using

the red datasets in Figure 6 together (e.g. blocks [3] and [4]),

Memory
Space

InputData

vector<DTSSInput>

vector<DTSSInput>

pair<size_t, void *>
DTSSInput

pair<size_t, void *>

pair<size_t, void *>

Figure 8. Example mapping of InputData structs to mem-

ory regions. Purple and green InputDatas conflict with over-
lapping memory regions.

as they overlap and need to access the same memory dur-

ing their jobs, which means they might share (unprotected)

cached data. We define such intersections as conflicts. Two
jobs are in conflict if any part of their dataset requires the

same memory access. In our example, as any job that shares

even a pixel with another job conflicts with another, each

N-by-N-pixel dataset has up to 𝑁 2
conflicting datasets.

EMR automatically detects overlapping regions in the in-

put structs and assigns them as conflicts. Developers may

also opt to express algorithm-specific conflicts that EMRmay

not detect by writing their own detection function.

Jobs are then grouped into jobsets, which are sets of jobs

that do not conflict. For example, the blue datasets shown in

Figure 6 may compose part of a jobset. By only running one

jobset at a time, EMR ensures that an SEU will only affect

one of the executors. Invalidating the cache of the previous

jobset will then ensure that no cache SEUs will affect the

execution of the next jobset. EMR greedily creates jobsets by

assigning jobs to the first available jobset without conflicts.

Reliability frontier We observe that when ECC is avail-

able, which is always the case on commodity flash storage

and in many cases also in commodity DRAM, it can correct

the vast majority of SEUs. However, some older commod-

ity SoCs that have been deployed into spacecraft, such as

the one Radshield is currently implemented on in space,

do not have ECC DRAM chips [27]. To this end, we define

the reliability frontier as the last layer of a system that has

hardware protections and can be trusted, as shown in Fig-

ure 3. EMR uses this property to assume all data stored on

an ECC-protected medium is protected, and does not need

to be replicated. Thus, only the part of the program that runs

on unprotected hardware needs to be replicated. These are

the CPU pipelines, the CPU cache and the DRAM (when

DRAM ECC is unavailable). Furthermore, if the reliability

frontier is at storage, the page cache must also be cleared

before proceeding to account for potential SEUs in DRAM.

Depending on the reliability frontier, the input data and

program results will either be stored in DRAM or in storage.

The memory or storage overhead of this method should be

easily handled by the host computer, as in the use cases

identified in §4.2, output data of our target programs tend to

7

H. Wang et al.

Figure 9. The optimal replication scheme for the image

processing use case, where the overall map is shared while

the search image is replicated to minimize cache clears.

be either the same size, or much smaller than the input data.

The overhead will be further minimized by having the same

instance of input data be shared across all three executors.

As all data is ultimately stored within the reliability frontier,

input data and output data will not be affected by SEUs.

While SEU may strike while data is being replicated from

the reliability frontier, this should only affect one of the

executors, allowing the other two executors to outvote the

erroneous one during execution.

We note that some processors also provide ECC in cache,

though not the CPU pipelines. In such a case, EMR simply

reverts to 3-MR, as the data in the shared caches no longer

need to be replicated.

Minimizing cache clears by replication In many space-

craft algorithms (e.g. image processing or encryption), a

common data block such as a target image or encryption

key needs to be shared across all executors. As clearing the

cache in between every single run cancels out the benefits

of parallelization, this common block can simply be repli-

cated locally by each executor in separate memory locations.

This ensures reliability without needing cache clears on the

replicated memory area, as an SDC in one of the replicated

locations would not affect the other two executors.

EMR detects this “common data” by looking for datasets

within the input data with identical pointers and offsets. EMR

then replicates identical elements with a frequency above

some developer-specified threshold across all three executors.

By default, we use a threshold of 0.01 (a data element present

in at least 1% of the input data), which we experimentally

determined to be the most optimal configuration shown in

Figure 9. We evaluate different values for the common data

threshold in §4.2.4.

Runtime implementation During runtime, EMR is be di-

vided into four threads: three executors and one orchestrator.

The orchestrator ensures that worker threads never access

datasets with overlapping regions at the same time, which

may cause corrupted data to be used by multiple workers.

The worker threads receive input jobs and processes them

in order, returning the output data to a shared locationwithin

the reliability frontier. After a job completes, the worker

flushes the cache lines related to that job. As each job in

0.01 0.02 0.03 0.04 0.05 0.06
Latchup Current Draw (A)

0

20

40

60

80

100

Fa
lse

 N
eg

at
iv

e
Ra

te
 (%

)

Figure 10. ILD’s misdetection rate as latchup current

changes. The false negative rate falls to zero as additional

latchup current increases beyond 5mA.

a jobset accesses a unique memory region, no flushes in a

jobset will overlap. When a jobset completes, all potentially

conflicting memory regions will have already been flushed.

This amortizes the runtime of the cache clears into the exe-

cution time, thus minimizing the total runtime.

EMR reserves a full core, or set of cores, for each executor

instance. Specific core groups are pinned to each executor

instance, thus isolating faults within specific cores to the

related instance. For example, if an SEU occurs within one

core’s ALU, only that instance will produce an incorrect

result. However, as the other two executors will never use

that core, they will still produce the correct result, out-voting

the incorrect result. This design allows for programs to take

full advantage of CPU-specific pipelines such as NEON and

AES, while preserving the correctness properties of 3-MR.

4 Ground Evaluation
Before integrating Radshield into real-world flight soft-

ware, we must first ensure that Radshield works correctly on

the ground. However, real-world testing requires allocating

time on extremely expensive particle beams [25], which still

cannot reliably induce our target errors due to the tiny size

of transistors and imprecision of the ion beam. Thus, our

ground-based evaluation relies on synthetic fault injection

methods to answer the following questions:

Q1: Can ILD accurately detect SELs (§4.1.3)?

Q2: What is the performance impact of ILD (§4.1.4)?

Q3: What is the runtime performance of EMR (§4.2.3)?

Q4: Howdoes the reliability frontier affect runtime (§4.2.4)?

Q5: What is the energy efficiency of Radshield (§4.2.5)?

Q6: How vulnerable is EMR to an undetected SEU com-

pared to 3-MR (§4.2.6)?

Q7: What is the developer overhead of Radshield (§4.2.7)?

4.1 SEL Detection (Q1–Q2)

4.1.1 Experimental setup and workload Our testing

was done on a Raspberry Pi Zero 2 W with a minimal Linux

system running. In order to accurately model usage onboard

8

Shields Up!
Software Radiation Protection for Commodity Hardware in Space

ILD Random Static Threshold
Forest 1.75A 1.80A 1.85A

False negative rate 0.00% 35.0% 38.2% 54.5% 62.1%

False positive rate 0.02% 62.4% 40.6% 34.0% 27.6%

Table 2. Accuracy of ILD in detecting latchups.

spacecraft, non-essential services related to Wi-Fi and Blue-

tooth were disabled. This system exactly matches that of

our LEO SmallSat satellites. An INA3221, connected to the

Raspberry Pi with I2C, was used to measure the system’s

current draw. A potentiometer, a variable resistor, was added

between 𝑉𝑑𝑑 and 𝐺𝑛𝑑 in parallel with the Rasperry Pi. The

potentiometer causes detect additional current draw that the

INA3221 detects, accurately simulating the effects of an SEL.

We tested Radshield’s latchup detection on a real-world

flight software workload [75]. We emulated latchups by in-

creasing the current draw by +0.07A every 30 minutes over

960 total hours. Quiescence was induced every three minutes

to allow ILD to sample the quiescent current.

4.1.2 Baselines We use two baselines for latchup detec-

tion described in §2.1: (a) static current thresholds, and (b) a

naive ML approach [30]. A static threshold was set to various

current draw levels based on quiescent current draw. The ML

approach uses a random forest classifier trained on current

draw under emulated SEL and during quiescence. Note that

this model treats the system as a black box and is trained

solely on current draw and not on performance counters.

4.1.3 LatchupDetection Accuracy (Q1) Table 2 presents
our results on the latchup detection workload. ILD achieves

a 0% false negative rate, or in other words, no latchups were

missed by ILD. Compared to other ML methods for latchup

detection, ILD is far better at detecting SELs due to its use

of system metrics. As the other methods were trained solely

on current draw and have no temporal element [30], they

cannot distinguish transient high currents from SELs.

We ran a second experiment where ILD was given one

minute of increased power draw between +0.01A to +0.1A

in increasing order, and every SEL detection trigger was

counted. As shown in Figure 10, ILD incurs no false nega-

tives as long as the additional current draw incurred by the

SEL is over 0.05A. This is well below the minimum experi-

mentally measured SEL current of 0.07A [45]. Thus, ILD is

very unlikely to misclassify a SEL and damage the spacecraft.

Furthermore, as shown in Table 2, ILD experienced a false

positive rate of only 0.15% over 960 hours of testing. Thus,

in production, we expect to see one spurious reboot due to a

false SEL alarm every 22 hours. As most spacecraft tend to

stay in quiescence for a large portion of each day [69], from

our conversations with operators an additional reboot daily

is acceptable for most missions, given that the alternative is

irreversibly damaging the spacecraft.

Measurement Overhead Reboot-Only Overhead

+72 seconds / hr + 72.91 seconds / hr

Table 3.Worst-case overhead of ILD per hour of compute

when all quiescent periods are induced and when a false

positive reboot is triggered.

Reliability Scheme Relative Area Protected

None 0%

Unprotected parallel 3-MR 75%

3-MR 100%

EMR 100%

Table 4. Relative protected circuit area for our reliability

schemes, based on die areas on a Snapdragon 845.

4.1.4 Performance Impact (Q2) During testing, ILD’s

overhead while under load increased runtimes of representa-

tive applications on average by 3% due to induced quiescence.

Additional CPU usage during quiescence was not recorded,

showing that ILD’s overhead is comparable with other com-

mon system maintenance tasks. ILD’s worst-case overhead,

when bubbles are always induced, is shown in Table 3.

4.2 SEU Mitigation (Q3–Q7)

4.2.1 Experimental Setup and Baselines We test the

energy usage and runtime of EMR compared to two baselines:

sequential 3-MR, and an “unprotected” parallel 3-MR that

does not clear the cache. Unprotected 3-MR does not protect

against SEUs in the shared cache, leaving about 25% of the

die area (see Table 4) vulnerable to errors. Unprotected 3-

MR acts as a benchmark to measure how far EMR is from

“optimal” performance. By default, unless stated otherwise,

we assume the device under test has ECC DRAM.

4.2.2 Workloads As shown in Table 5, our testingmethod-

ology for EMR centers on five use cases commonly found

onboard modern spacecraft [9, 17, 22, 71, 76]. These work-

loads exercise a range of compute pipelines and job conflict

styles. For example, the DEFLATE algorithm in our com-

pression benchmark relies on data from the block directly

preceding it, whereas the AES-256-ECB encryption bench-

mark only uses data from the block being encrypted. We

also test various math pipelines, including SSE2 in our image

processing use case and AVX2 for our DNN benchmark.

These tests replicate memory if it is used in 1% or more of

input data across jobs, resulting in the replication strategies

listed in Table 5. §4.2.4 describes howwe found this threshold

to be optimal across different use cases.

The image processing benchmark was run on a flight-

tested mobile ARM processor [68], while all other workloads

were run on a flight-tested x86 CPU [77].

9

H. Wang et al.

Worload Library Replication Strategy

Encryption OpenSSL Replicate key

Compression Zlib No replication

Intrusion detection RE2 Replicate search pattern

Image processing OpenCV Replicate match image

Neural networks N/A Replicate model weights & biases

Table 5. List of tested workloads, along with the correspond-

ing state-of-the-art library used and optimal replication strat-

egy for each workload.

36

AES256 DEFLATE Image
Processing

RE2 DNN0

2

4

Method

Re
la

tiv
e

Ru
nt

im
e

3-MR EMR

Figure 11. Relative runtimes of serial 3-MR and EMR on

the DRAM reliability frontier, normalized to an unprotected

parallel 3-MR baseline.

500 1000 1500 2000 2500 3000 3500 4000
Input Size (MB)

0

25

50

75

100

125

150

175

Ru
nt

im
e

(s
)

Disk 3-MR
Disk EMR
DRAM 3-MR
DRAM EMR

Figure 12. Effect of input sizes on runtime of AES-256, using

EMR and 3-MR on both DRAM and disk reliability frontiers.

4.2.3 Performance (Q3) Figure 11 compares the runtime

of EMR to 3-MR, normalized against unprotected parallel

3-MR. EMR runs significantly faster than protected 3-MR in

all workloads, as EMR multithreads compute and amortizes

cache clears. However, both approaches are slower than

the unprotected parallel 3-MR, since they clear the cache

between jobsets. EMR’s slowdown is also relatively modest:

7–77% higher compared to the unprotected baselines.

Figure 12 compares the runtime of EMR and 3-MR on the

DRAM and disk frontiers using the encryption workload.

The results show that 3-MR is consistently slower than EMR

across both frontiers, and the runtime difference is more

Operation 3-MR EMR
Disk Read 1.8s 0.6s

Memory Allocation 0.7s 0.7s

Compute 2421s 987s

Cache Clear 22s 30s

Total Runtime 2,514s 1,019s

Table 6. Runtime of image processing algorithm with a

DRAM reliability frontier, divided by operation.

pronounced as input size increases. While it is much slower

to have the reliability frontier to be on storage rather than

DRAM, EMR is still significantly faster than 3-MR.

4.2.4 Impact of Replication (Q4) We tested EMR’s per-

formance on three of our workloads that access the same

memory locations across many jobs (e.g. the encryption

key discussed in §3.2) while varying the threshold for which

memory gets replicated across jobs. The results shown in Fig-

ure 13. 0% replication amounts to serial 3-MR, as the shared

portion of each dataset cannot be accessed simultaneously,

leading to all jobs conflicting. Similarly, 100% replication is a

fully-protected version of parallel 3-MR consuming 3× more

memory. These tests were selected as they vary in both con-

flict graph density and amount of shared data. We see that

each use case has a “sweet spot” that minimizes runtime and

memory usage. For example, the image processing workload

worked best when the full image is not replicated, but the

image to be matched was. Similarly, encryption worked best

when the data was shared, but the key was replicated.

4.2.5 Energy Efficiency (Q5) Figure 14 shows the energy
consumption of Radshield with DRAM ECC. We compare

3-MR to EMR only, and Radshield, which includes both EMR

and ILD running together. Encryption and packet process-

ing workloads show the lowest relative energy usage, while

DNNs in EMR draw more energy than in 3-MR. This is be-

cause DNNs require more cache clears to avoid jobset con-

flicts. Thus, conflict count in a program is correlated with

energy usage. ILD’s energy overhead is minimal, with only

a marginal increase compared to running EMR only.

4.2.6 Vulnerability to SEUs (Q6) The window of vulner-

ability method introduced by Borchert et al. [54] provides an

estimate of vulnerability to radiation in a uniform radiation

environment. Essentially, the chance that a SEU impacts a

running application is proportional to the area of the target

chip is multiplied by the runtime of the application. For the

image processing use case, the runtime of EMR is 40% the

runtime of 3-MR (Table 6), but about twice as much die area

on our ARM chip is active during EMR, as outputs are repli-

cated in memory. Thus, the chance a SEU occurs during EMR

in a uniform radiation environment is 0.4 · 2 = 80% of the

chance a SEU occurring during the same application in 3-MR.

Furthermore, as shown in Table 6, 96% of the runtime is spent

in compute, where EMR will mitigate SEUs. Similarly, SEUs

10

Shields Up!
Software Radiation Protection for Commodity Hardware in Space

1 10 100
Replication Threshold (%)

0

10

20

30

40

50
M

em
or

y
Us

e
(G

B) Memory
Runtime

0

20

40

60

80

100

Ru
nt

im
e

(s
)

Encryption

1 10 100
Replication Threshold (%)

0

5

10

15

M
em

or
y

Us
e

(G
B) Memory

Runtime

0

500

1000

1500

Ru
nt

im
e

(s
)

DNN

1 10 100
Replication Threshold (%)

0

100

200

300

M
em

or
y

Us
e

(M
B) Memory

Runtime

0

1000

2000

Ru
nt

im
e

(s
)

Image Processing

Figure 13. Impact of size of replicated portions on program memory and runtime in EMR.

32.5

35.0

AES256 DEFLATE Image
Processing

RE2 DNN0.0

2.5

5.0

7.5

10.0

Method

Re
la

tiv
e

En
er

gy
 U

sa
ge 3-MR

EMR
Radshield (EMR + ILD)

Figure 14. Comparison of relative energy usage of serial

3-MR, EMR, and Radshield on the DRAM reliability frontier,

normalized to a parallel 3-MR baseline.

Scheme Corrected No Effect Error SDC

None 0 8 9 3

3-MR 3 16 1 0

EMR 2 17 1 0

EMR + MBU 2 8 0 0

Table 7. Results of fault injection into our OpenCVworkload

with EMR, 3-MR, and no redundancy.

during the 3% of runtime spent on memory allocation and

cache clears will result in application-visible errors, leaving

just the 0.06% of time spent on disk reads vulnerable.

To test this, we ran a synthetic fault injection test on our

image processing workload 20 times for each redundancy

scheme using a GDB-based fault injection tool [36]. SEU(s)

were randomly injected within the runtime of the program,

following a uniform distribution based on each component’s

runtime and memory overhead. To simulate MBUs, two bits

were randomly flipped instead. As discussed in §3, SEUs

were not injected into the kernel memory, but covers the

memory space of the executors and the orchestrator. EMR

and 3-MR did not incur SDCs, as shown in Table 7. This is

because the window of vulnerability in these schemes lies

only in the final comparison of the executor outputs, which

takes a minuscule amount of time compared to the compute.

However, in one case for both EMR and 3-MR, a pointer in a

Operation Net line change

Encryption 8

Compression 6

Image Processing 7

Packet Matching 9

DNN 9

Table 8. Code changes required to implement EMR on dif-

ferent workloads from a 3-MR implementation.

job being sent to an executor was corrupted and resulted in

segfault, which we define as a detected error.

We did not simulate error injection into the cache, as

our fault injection tool is based on QEMU, where the mem-

ory model is a “pool” of memory instead of a multi-level

cache. Though we simulate the cache by tracking memory

accesses in QEMU, fault injection into locations currently in

the “cache” would also modify the associated memory value.

A possible alternative was to use an architectural simulator

such as Gem5 [78], but such simulators are very slow (it

takes about 15 minutes to just boot Linux with Gem5).

4.2.7 Developer overhead (Q7) We note that EMR does

have a slight development cost in that a developer must

integrate this library, while 3-MR can be implemented with

a simple loop. However, if code was written in a way that

allows for the repeated computation to be easily extracted,

only minimal changes are required to implement EMR, as

shown in Table 8. Many of these changes actually simplify

the code, as EMR handles a significant amount of setup code

for developer. In fact, the most significant developer effort is

in labelling input and output data for EMR to resolve.

5 Real-World Deployment in Space
We now describe our experience deploying Radshield on-

board two active spacecraft. ILD runs in observational mode

(without yet the ability to reboot) onboard an LEO SmallSat

mission running Raspberry Pi Zero 2 W. EMR also protects

a Snapdragon 801-based coprocessor [76] onboard a Mars

rover. While these missions represent both ends of the cost

spectrum, they share common deployment challenges.

As radiation errors tend to strike randomly, it is hard to

regularly test Radshield after its been deployed. For example,

11

H. Wang et al.

a two-hour run of a custom tool designed to detect SDCs

onboard the flagship mission on Mars did not encounter any

SEUs. Due to operational concerns that result in low active

time for these programs, neither deployment has detected a

radiation error yet. However, the Radshield implementation

of the global localization algorithm deployed on Mars, and

described in §3.2, only uses 26% of the runtime of the non-

parallel, radiation hardened approach [68].

Increased visibility into radiation errors After an SEU

occurs, its effects range from simply being overwritten to

causing significant, irreparable damage to the spacecraft.

Operationally, this wide range of possible effects makes it

hard to narrow down a failure to an SEU. For example, on a

compute element onboard our flagship mission that did not

implement EMR, we can only detect SEUs during analysis of

downlink data, where checksums do not match. In contrast,

as EMR’s executors “vote” on a correct solution, it is much

quicker to isolate SEUs in an EMR system, as disagreements

between executors are detected at the next comparison stage.

Similarly, it was difficult to conclude that SmallSats were

damaged by latch-ups, as the commodity computer simply

stops responding after burning out. A radiation-hardened

monitoring chip also onboard the SmallSat was used to diag-

nose the SEL, as all components other than the commodity

computer worked correctly. To this end, we designed ILD

to provide additional insight into these errors by recording

fine-grained telemetry which allows ground operators to

definitively trace a potential issue to a SEL.

Data collection efforts This work marks the start of a

multi-year data collection effort. We aim to provide the aca-

demic community with a public dataset of these errors, along

with traces and descriptions of the effects of each error on the

mission. While some of the data must be redacted due to the

sensitivity of our collaborators’ missions, we hope that the

data collected on these errors will provide additional insight

into how systems behave in high-radiation environments.

6 Conclusions
Renewed interest in space exploration has led to a surge

in new spacecraft missions, resulting in quickly-developing

constellations of LEO satellites. As spacecraft need to run

demanding workloads such as image processing, network

functions, and advanced navigation, operators are increas-

ingly relying on commodity hardware. However, these chips

are susceptible to potentially mission-ending radiation er-

rors, which has incurred significant monetary losses.

We introduce Radshield, the first software-only radiation

error mitigation system. The key idea behind Radshield is to

treat the software running on the hardware as a white-box,

allowing Radshield to detect 1.5× more SELs than threshold-

ing. Radshield also protects against SEUs just as effectively

as 3-MR, with up to 70% less runtime and energy. Radshield

is currently deployed onboard two real-world spacecraft at

both ends of the cost spectrum: a low-cost SmallSat in low-

Earth orbit; and a flagship science mission on the Martian

surface. This is but the first step in providing software-based

fault tolerance in space; indeed many challenges remain. We

hope that by enabling commodity hardware to operate safely

and reliably in space, we can lower the barrier of entry for

spacecraft operations and democratize space exploration. In

this spirit, we will open source Radshield’s code and experi-

ments.

Acknowledgments
This work was supported by the Department of Defense

(DoD) through the National Defense Science & Engineer-

ing Graduate (NDSEG) Fellowship Program. The authors’

research was also supported by the NSF (CNS-2143868). A

portion of this research was carried out at the Jet Propulsion

Laboratory, California Institute of Technology, under a con-

tract with the National Aeronautics and Space Administra-

tion (80NM0018D0004). The authors thank the anonymous

reviewers and our shepherd, David Cock, for their helpful

feedback. The authors would also like to thank Jeremy Nash

and Steven Guertin of the Jet Propulsion Laboratory for their

input on this work.

References
[1] H. Jones. “The recent large reduction in space launch cost”. In: 48th

International Conference on Environmental Systems. 2018.

[2] A. C. Boley and M. Byers. “Satellite mega-constellations create risks

in Low Earth Orbit, the atmosphere and on Earth”. In: Scientific
Reports 11.1 (2021), pp. 1–8.

[3] Starlink. 2023. url: https://www.starlink.com/.
[4] Z. Qu, G. Zhang, H. Cao, and J. Xie. “LEO satellite constellation for

Internet of Things”. In: IEEE Access 5 (2017), pp. 18391–18401.
[5] J. Gedmark and S. Smith. “The Evolution of the Satellite Economy”.

In: a16z Podcast (Sept. 2023). url: https://a16z.com/podcast/the-
evolution-of-the-satellite-economy.

[6] Planet. 2023. url: https://www.planet.com/.
[7] Spire. 2023. url: https://spire.com/.
[8] Filecoin Foundation and Lockheed Martin Bring Decentralized Storage

to Space. May 2022. url: https://filecoinfoundation.medium.com/
filecoin- foundation-and- lockheed-martin-bring-decentralized-
storage-to-space-db9a15e66264.

[9] Y. Michalevsky and Y. Winetraub. “WaC: SpaceTEE-Secure and

Tamper-Proof Computing in Space using CubeSats”. In: Proceedings
of the 2017 Workshop on Attacks and Solutions in Hardware Security.
2017, pp. 27–32.

[10] A. Fikes, M. Gal-Karziri, E. Gdoutos, M. Kelzenberg, E. Warmann,

R. Madonna, H. Atwater, A. Hajimiri, and S. Pellegrino. “The Caltech

space solar power project: Design, progress, and future direction”.

In: Proceedings of the IEEE WiSEE Space Solar Power Workshop. 2022.
[11] F. Michel, M. Trevisan, D. Giordano, and O. Bonaventure. “A first look

at starlink performance”. In: Proceedings of the 22nd ACM Internet
Measurement Conference. 2022, pp. 130–136.

[12] J. Bao, B. Zhao, W. Yu, Z. Feng, C. Wu, and Z. Gong. “OpenSAN: A

software-defined satellite network architecture”. In: ACM SIGCOMM
Computer Communication Review 44.4 (2014), pp. 347–348.

[13] D. Bhattacherjee, W. Aqeel, I. N. Bozkurt, A. Aguirre, B. Chan-

drasekaran, P. B. Godfrey, G. Laughlin, B. Maggs, and A. Singla.

12

https://www.starlink.com/
https://a16z.com/podcast/the-evolution-of-the-satellite-economy
https://a16z.com/podcast/the-evolution-of-the-satellite-economy
https://www.planet.com/
https://spire.com/
https://filecoinfoundation.medium.com/filecoin-foundation-and-lockheed-martin-bring-decentralized-storage-to-space-db9a15e66264
https://filecoinfoundation.medium.com/filecoin-foundation-and-lockheed-martin-bring-decentralized-storage-to-space-db9a15e66264
https://filecoinfoundation.medium.com/filecoin-foundation-and-lockheed-martin-bring-decentralized-storage-to-space-db9a15e66264

Shields Up!
Software Radiation Protection for Commodity Hardware in Space

“Gearing up for the 21st century space race”. In: Proceedings of the
17th ACM Workshop on Hot Topics in Networks. 2018, pp. 113–119.

[14] S. Kassing, D. Bhattacherjee, A. B. Águas, J. E. Saethre, and A. Singla.

“Exploring the “Internet from space” with Hypatia”. In: Proceedings
of the ACM Internet Measurement conference. 2020, pp. 214–229.

[15] A. Singla. “SatNetLab: a call to arms for the next global Internet

testbed”. In: SIGCOMM Comput. Commun. Rev. 51.2 (May 2021),

pp. 28–30. issn: 0146-4833. doi: 10 . 1145 / 3464994 . 3465000. url:
https://doi.org/10.1145/3464994.3465000.

[16] D. Perdices, G. Perna, M. Trevisan, D. Giordano, and M. Mellia.

“When satellite is all you have: watching the internet from 550 ms”.

In: Proceedings of the 22nd ACM Internet Measurement Conference.
2022, pp. 137–150.

[17] M. M. Kassem, A. Raman, D. Perino, and N. Sastry. “A browser-

side view of starlink connectivity”. In: Proceedings of the 22nd ACM
Internet Measurement Conference. 2022, pp. 151–158.

[18] J. R. Wertz, R. C. Conger, M. Rufer, N. Sarzi-Amadé, and R. E. Van

Allen. “Methods for Achieving Dramatic Reductions in SpaceMission

Cost”. In: Reinventing Space Conference. 2011, pp. 2–6.
[19] W. A. Powell. “High-performance spaceflight computing (HPSC)

project overview”. In: Radiation Hardened Electronics Technology
Conference (RHET) 2018. GSFC-E-DAA-TN62651. 2018.

[20] J. Gibney. “AMD Ryzen™ 6000 Series for Mobile: Technology

Overview”. In: 2022 IEEE Hot Chips 34 Symposium (HCS). IEEE Com-

puter Society. 2022, pp. 1–24.

[21] B. Denby, K. Chintalapudi, R. Chandra, B. Lucia, and S. Noghabi.

“Kodan: Addressing the computational bottleneck in space”. In: Pro-
ceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume
3. 2023, pp. 392–403.

[22] N. Bleier, M. H. Mubarik, G. R. Swenson, and R. Kumar. “Space

Microdatacenters”. In: Proceedings of the 56th Annual IEEE/ACM
International Symposium on Microarchitecture. 2023, pp. 900–915.

[23] D. Bhattacherjee, S. Kassing, M. Licciardello, and A. Singla. “In-orbit

computing: An outlandish thought experiment?” In: Proceedings of
the 19th ACMWorkshop on Hot Topics in Networks. 2020, pp. 197–204.

[24] L. Burcin. “RAD750 experience: The challenge of SEE hardening a

high performance commercial processor”. In: Microelectronics Relia-
bility & Qualification Workshop (MRQW). 2002.

[25] S. M. Guertin. “Radiation effects on ARM devices”. In: NEPP Electron-
ics Technology Workshop. National Aeronautics and Space Agency.

Jet Propulsion Laboratory, 2019.

[26] H. Leppinen. “Current use of Linux in spacecraft flight software”. In:

IEEE Aerospace and Electronic Systems Magazine 32.10 (2017), pp. 4–
13.

[27] B. Balaram, T. Canham, C. Duncan, H. F. Grip, W. Johnson, J. Maki, A.

Quon, R. Stern, and D. Zhu. “Mars helicopter technology demonstra-

tor”. In: 2018 AIAA Atmospheric Flight Mechanics Conference. 2018,
p. 0023.

[28] P. Layton, D. Czajkowski, J. Marshall, H. Anthony, and R. Boss. “Sin-

gle event latchup protection of integrated circuits”. In: RADECS 97.
Fourth European Conference on Radiation and its Effects on Compo-
nents and Systems (Cat. No. 97TH8294). IEEE. 1997, pp. 327–331.

[29] J. S. Chang, W. Shu, and J. Jiang. Electronic circuit for single-event
latch-up detection and protection. US Patent 10,566,780. Feb. 2020.

[30] A. Dorise, C. Alonso, A. Subias, L. Travé-Massuyès, L. Baczkowski,

and F. Vacher. “Machine learning as an alternative to thresholding for

space radiation high current event detection”. In: 2021 21th European
Conference on Radiation and Its Effects on Components and Systems
(RADECS). IEEE. 2021, pp. 1–7.

[31] Y. Shen, G. Heiser, and K. Elphinstone. “Fault tolerance through

redundant execution on cots multicores: Exploring trade-offs”. In:

2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE. 2019, pp. 188–200.

[32] W. Li and M. Hudson. “Earth’s Van Allen Radiation Belts: From

Discovery to the Van Allen Probes Era”. In: Journal of Geophysical
Research: Space Physics 124.11 (Nov. 2019), pp. 8319–8351. issn: 2169-
9402. doi: 10.1029/2018ja025940. url: http://dx.doi.org/10.1029/
2018JA025940.

[33] K. L. Bedingfield and R. D. Leach. Spacecraft system failures and
anomalies attributed to the natural space environment. Vol. 1390. Na-
tional Aeronautics and Space Administration, Marshall Space Flight

Center, 1996.

[34] S.M. Guertin.ARMRadiation Testing&Collaborations. June 2020.url:
https://trs.jpl.nasa.gov/handle/2014/52948 (visited on 12/31/2022).

[35] A. G. Schmidt, M. French, and T. Flatley. “Radiation hardening by

software techniques on FPGAs: Flight experiment evaluation and

results”. In: 2017 IEEE Aerospace Conference. IEEE. 2017, pp. 1–8.
[36] H. Wang, S. Myint, V. Verma, Y. Winetraub, J. Yang, and A. Cidon.

“Mars Attacks! Software Protection Against Space Radiation”. In:

Proceedings of the 22nd ACM Workshop on Hot Topics in Networks.
2023, pp. 245–253.

[37] W. Kolasinski, J. Blake, J. Anthony, W. Price, and E. Smith. “Simu-

lation of cosmic-ray induced soft errors and latchup in integrated-

circuit computer memories”. In: IEEE Transactions on Nuclear Science
26.6 (1979), pp. 5087–5091.

[38] L. Adams, E. Daly, R. Harboe-Sorensen, R. Nickson, J. Haines, W.

Schafer, M. Conrad, H. Griech, J. Merkel, T. Schwall, et al. “A ver-

ified proton induced latch-up in space (CMOS SRAM)”. In: IEEE
Transactions on Nuclear Science 39.6 (1992), pp. 1804–1808.

[39] B. Johlander, R. Harboe-Sorensen, G. Olsson, and L. Bylander.

“Ground verification of in-orbit anomalies in the double probe electric

field experiment on Freja”. In: IEEE Transactions on Nuclear Science
43.6 (1996), pp. 2767–2771.

[40] F. Yao, A. S. Rakin, and D. Fan. “DeepHammer: Depleting the in-

telligence of deep neural networks through targeted chain of bit

flips”. In: 29th USENIX Security Symposium (USENIX Security 20).
2020, pp. 1463–1480.

[41] C. Roscian, F. Praden, J.-M. Dutertre, J. Fournier, and A. Tria. “Secu-

rity characterisation of a hardened AES cryptosystem using a laser”.

In: Technical Sciences/University of Warmia and Mazury in Olsztyn
15 (1 (2012), pp. 139–154.

[42] J. A. Pellish. “Radiation 101: Effects on Hardware and Robotic Sys-

tems”. In: (2015).

[43] D. M. Hassler, C. Zeitlin, R. Wimmer-Schweingruber, S. Böttcher,

C. Martin, J. Andrews, E. Böhm, D. Brinza, M. Bullock, S. Burmeister,

et al. “The Radiation Assessment Detector (RAD) Investigation”. In:

Space Science Reviews 170.1 (2012), pp. 503–558.
[44] J. Tausch, D. Sleeter, D. Radaelli, and H. Puchner. “Neutron Induced

Micro SEL Events in COTS SRAM Devices”. In: 2007 IEEE Radiation
Effects Data Workshop. 2007, pp. 185–188. doi: 10.1109/REDW.2007.
4342562.

[45] N. Pieper, Y. Xiong, A. Feeley, D. Walker, R. Fung, S.-J. Wen, D. Ball,

and B. Bhuva. “Micro-Latchup Location and Temperature Character-

ization in a 7-nm Bulk FinFET Technology”. In: 2021 21th European
Conference on Radiation and Its Effects on Components and Systems
(RADECS). IEEE. 2021, pp. 1–7.

[46] Y. He, J. Zhao, W. Shu, K. S. Chong, J. Chang, et al. “Demonstra-

tion of ZES’LDAP (Latchup Detection and Protection) enabling a

commercial-off-the-shelf FPGA for space applications”. In: 2022 22nd
European Conference on Radiation and Its Effects on Components and
Systems (RADECS). IEEE. 2022, pp. 1–4.

[47] J. Zhao, K.-S. Chong, W. Shu, M. Cho, and J. S. Chang. “Design and

Implementation of a High-Speed Low-Power K-Nearest-Neighbors-

based Algorithm for Detecting Micro-Single-Event-Latchups”. In:

IEEE Transactions on Nuclear Science (2024).
[48] E. Normand. “Single-event effects in avionics”. In: IEEE Transactions

on nuclear science 43.2 (1996), pp. 461–474.

13

https://doi.org/10.1145/3464994.3465000
https://doi.org/10.1145/3464994.3465000
https://doi.org/10.1029/2018ja025940
http://dx.doi.org/10.1029/2018JA025940
http://dx.doi.org/10.1029/2018JA025940
https://trs.jpl.nasa.gov/handle/2014/52948
https://doi.org/10.1109/REDW.2007.4342562
https://doi.org/10.1109/REDW.2007.4342562

H. Wang et al.

[49] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel. “Characterizing the

effects of transient faults on a high-performance processor pipeline”.

In: International Conference on Dependable Systems and Networks,
2004. IEEE Computer Society. 2004, pp. 61–61.

[50] B. D. Sierawski, M. H. Mendenhall, R. A. Weller, R. A. Reed, J. H.

Adams, J. W. Watts, and A. F. Barghouty. “CRÈME-MC: A physics-

based single event effects tool”. In: IEEE Nuclear Science Symposuim
& Medical Imaging Conference. IEEE. 2010, pp. 1258–1261.

[51] A. Lyons and G. Heiser. “Mixed-criticality support in a high-

assurance, general-purpose microkernel”. In: Workshop on Mixed
Criticality Systems. 2014, pp. 9–14.

[52] M. Rebaudengo, M. S. Reorda, M. Violante, and M. Torchiano. “A

source-to-source compiler for generating dependable software”. In:

Proceedings First IEEE International Workshop on Source Code Analysis
and Manipulation. IEEE. 2001, pp. 33–42.

[53] N. Oh, P. P. Shirvani, and E. J. McCluskey. “Error detection by dupli-

cated instructions in super-scalar processors”. In: IEEE Transactions
on Reliability 51.1 (2002), pp. 63–75.

[54] C. Borchert, H. Schirmeier, and O. Spinczyk. “Compiler-Implemented

Differential Checksums: Effective Detection and Correction of Tran-

sient and Permanent Memory Errors”. In: 2023 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE. 2023, pp. 81–94.

[55] M. Salloum, J. R. Mayo, and R. C. Armstrong. “In-situ mitigation of

silent data corruption in PDE solvers”. In: Proceedings of the ACM
Workshop on Fault-Tolerance for HPC at Extreme Scale. 2016, pp. 43–
48.

[56] D. Fiala, F. Mueller, and K. B. Ferreira. “Flipsphere: A software-based

DRAM error detection and correction library for HPC”. In: 2016
IEEE/ACM 20th International Symposium on Distributed Simulation
and Real Time Applications (DS-RT). IEEE. 2016, pp. 19–28.

[57] M. Turmon, R. Granat, and D. Katz. “Software-implemented fault

detection for high-performance space applications”. In: Proceeding
International Conference on Dependable Systems and Networks. DSN
2000. IEEE. 2000, pp. 107–116.

[58] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,

and M. Payer. “Control-flow integrity: Precision, security, and per-

formance”. In: ACM Computing Surveys (CSUR) 50.1 (2017), pp. 1–
33.

[59] J. Kosaian and K. Rashmi. “Arithmetic-intensity-guided fault toler-

ance for neural network inference on GPUs”. In: Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis. 2021, pp. 1–15.

[60] W. Zheng, B. Xu, J. Gu, and H. Chen. “SAVE: Software-Implemented

Fault Tolerance for Model Inference against GPU Memory Bit Flips”.

In: 2025 USENIX Annual Technical Conference. USENIX. 2025.
[61] D. Nicholaeff, N. Davis, D. Trujillo, and R. Robey. “Cell-based adap-

tive mesh refinement implemented with general purpose graphics

processing units”. In: Tech. Rep. LA-UR-11-07127 (2012).

[62] M. Donald. “How An Ionizing Particle From Outer Space Helped A

Mario Speedrunner Save Time”. In: (Sept. 2020). url: https://www.
thegamer.com/how-ionizing-particle-outer-space-helped-super-
mario-64-speedrunner-save-time/.

[63] S. Wang, G. Zhang, J. Wei, Y. Wang, J. Wu, and Q. Luo. “Understand-

ing Silent Data Corruptions in a Large Production CPU Population”.

In: Proceedings of the 29th Symposium on Operating Systems Principles.
2023, pp. 216–230.

[64] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju, P. Ran-

ganathan, D. E. Culler, and A. Vahdat. “Cores that don’t count”. In:

Proceedings of the Workshop on Hot Topics in Operating Systems. 2021,
pp. 9–16.

[65] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. “Cosmic rays don’t

strike twice: Understanding the nature of DRAM errors and the

implications for system design”. In:ACMSIGPLANNotices 47.4 (2012),
pp. 111–122.

[66] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Veris-

simo. “Efficient byzantine fault-tolerance”. In: IEEE Transactions on
Computers 62.1 (2011), pp. 16–30.

[67] A. Aponte-Moreno, F. Restrepo-Calle, and C. Pedraza. “A Low-

Overhead Radiation Hardening Approach using Approximate Com-

puting and Selective Fault Tolerance Techniques at the Software

Level”. In: 2019 19th European Conference on Radiation and Its Effects
on Components and Systems (RADECS). IEEE. 2019, pp. 1–4.

[68] V. Verma, J. Nash, L. Saldyt, Q. Dwight, H. Wang, S. Myint, J. Biesi-

adecki, M. Maimone, A. Tumbar, A. Ansar, G. Kubiak, and R. Hogg.

“Enabling Long & Precise Drives for The Perseverance Mars Rover

via Onboard Global Localization”. In: IEEE Aerospace Conference.
2024.

[69] V. Verma, F. Hartman, A. Rankin, M. Maimone, T. Del Sesto, O.

Toupet, E. Graser, S. Myint, K. Davis, D. Klein, et al. “First 210 so-

lar days of Mars 2020 Perseverance Robotic Operations-Mobility,

Robotic Arm, Sampling, and Helicopter”. In: 2022 IEEE Aerospace
Conference (AERO). IEEE. 2022, pp. 1–20.

[70] B. Denby and B. Lucia. “Orbital edge computing: Nanosatellite con-

stellations as a new class of computer system”. In: Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems. 2020, pp. 939–954.

[71] P. A. Ilott. “Communications with Mars: A Brief and Informal HIs-

tory”. In: Space-Terrestrial Internetworking Workshop. IEEE. 2021.
[72] D. McComas, J. Wilmot, and A. Cudmore. “The core flight system

(cFS) community: Providing low cost solutions for small spacecraft”.

In: Annual AIAA/USU Conference on Small Satellites. GSFC-E-DAA-
TN33786. 2016.

[73] J. J. Biesiadecki and M. W. Maimone. “The Mars exploration rover

surface mobility flight software driving ambition”. In: 2006 IEEE
Aerospace Conference. IEEE. 2006, 15–pp.

[74] B. Yost, S. Weston, G. Benavides, F. Krage, J. Hines, S. Mauro, S.

Etchey, K. O’Neill, and B. Braun. “State-of-the-art small spacecraft

technology”. In: (2021).

[75] R. Bocchino, T. Canham, G. Watney, L. Reder, and J. Levison. “F

Prime: an open-source framework for small-scale flight software

systems”. In: (2018).

[76] J. Nash, Q. Dwight, L. Saldyt, H. Wang, S. Myint, A. Ansar, and

V. Verma. “Censible: A Robust and Practical Global Localization

Framework for Planetary Surface Missions”. In: IEEE International
Conference on Robotics and Automation (2024).

[77] J. Maki, D. Gruel, C. McKinney, M. Ravine, M. Morales, D. Lee, R.

Willson, D. Copley-Woods, M. Valvo, T. Goodsall, et al. “The Mars

2020 Engineering Cameras and microphone on the Perseverance

rover: A next-generation imaging system for Mars exploration”. In:

Space Science Reviews 216 (2020), pp. 1–48.
[78] J. Lowe-Power, A. M. Ahmad, A. Akram, M. Alian, R. Amslinger,

M. Andreozzi, A. Armejach, N. Asmussen, S. Bharadwaj, G. Black,

G. Bloom, B. R. Bruce, D. R. Carvalho, J. Castrillón, L. Chen, N.

Derumigny, S. Diestelhorst, W. Elsasser, M. Fariborz, A. F. Farahani,

P. Fotouhi, R. Gambord, J. Gandhi, D. Gope, T. Grass, B. Hanind-

hito, A. Hansson, S. Haria, A. Harris, T. Hayes, A. Herrera, M.

Horsnell, S. A. R. Jafri, R. Jagtap, H. Jang, R. Jeyapaul, T. M. Jones,

M. Jung, S. Kannoth, H. Khaleghzadeh, Y. Kodama, T. Krishna, T.

Marinelli, C. Menard, A. Mondelli, T. Mück, O. Naji, K. Nathella, H.

Nguyen, N. Nikoleris, L. E. Olson, M. S. Orr, B. Pham, P. Prieto, T.

Reddy, A. Roelke, M. Samani, A. Sandberg, J. Setoain, B. Shingarov,

M. D. Sinclair, T. Ta, R. Thakur, G. Travaglini, M. Upton, N. Vaish,

I. Vougioukas, Z. Wang, N. Wehn, C. Weis, D. A. Wood, H. Yoon,

and É. F. Zulian. “The gem5 Simulator: Version 20.0+”. In: CoRR
abs/2007.03152 (2020). arXiv: 2007.03152. url: https://arxiv.org/abs/
2007.03152.

14

https://www.thegamer.com/how-ionizing-particle-outer-space-helped-super-mario-64-speedrunner-save-time/
https://www.thegamer.com/how-ionizing-particle-outer-space-helped-super-mario-64-speedrunner-save-time/
https://www.thegamer.com/how-ionizing-particle-outer-space-helped-super-mario-64-speedrunner-save-time/
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Single-Event Latchups
	2.2 Single-Event Upsets
	2.3 Radiation Failures on Earth

	3 Design and Implementation
	3.1 ILD: White-Box SEL Detection
	3.2 EMR: Efficient SEU Detector

	4 Ground Evaluation
	4.1 SEL Detection (Q1–Q2)
	4.2 SEU Mitigation (Q3–Q7)

	5 Real-World Deployment in Space
	6 Conclusions
	Acknowledgments

