Mars Attacks!

Software Protection Against Space Radiation

Haoda Wang®

Columbia University
haoda.wang@columbia.edu

Yonatan Winetraub
CryptoSat
yonatan@cryptosat.io

ABSTRACT

Steven Myint
Jet Propulsion Laboratory

Vandi Verma
Jet Propulsion Laboratory

California Institute of Technology California Institute of Technology

steven.myint@jpl.nasa.gov

Junfeng Yang
Columbia University
junfeng@cs.columbia.edu

vandi.verma@jpl.nasa.gov

Asaf Cidon

Columbia University
asaf.cidon@columbia.edu

Due to their low cost and the need to run computationally-
intensive algorithms locally, satellites and spacecraft are
increasingly employing off-the-shelf computing hardware.
However, hardware in space is exposed to significantly
higher amounts of radiation than on Earth, potentially
destroying the hardware or causing it to output incorrect
results. We envision that solely using software fault toler-
ance techniques, commodity hardware operating in space
can achieve fault tolerance equivalent or close to expensive
and slow radiation-hardened hardware. To achieve this
goal, we need to address the two main radiation fault
scenarios: hardware overheating and silent data corruption.
We provide preliminary data on the effects of these errors,
and introduce a set of techniques to address them. Enabling
the full use of commodity hardware in space holds the
promise of improving the compute capabilities and cost
effectiveness of low-earth orbit satellites by orders of
magnitude.

CCS CONCEPTS

« Networks — Error detection and error correction; »
Computer systems organization — Reliability; « Soft-
ware and its engineering — Compilers; Operating systems;

KEYWORDS

satellite computing, fault tolerance, radiation hardening

“Also with Jet Propulsion Laboratory, California Institute of Technology.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

HotNets °23, November 28-29, 2023, Cambridge, MA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0415-4/23/11...$15.00
https://doi.org/10.1145/3626111.3628199

Specification EnduroSat OBC Snapdragon 801
Radiation-hardened Yes No
ISA ARMv7E-M ARMv7-A
Clock Speed 216MHz 2.5GHz
RAM 64MB ECC 2GB non-ECC
Storage 256MB Flash 32GB Flash
Cost $10, 000 $750

Table 1: Comparison between commodity and radia-
tion hardened computers common to spacecraft.

ACM Reference Format:

Haoda Wang, Steven Myint, Vandi Verma, Yonatan Winetraub,
Junfeng Yang, and Asaf Cidon. 2023. Mars Attacks! Software
Protection Against Space Radiation. In Proceedings of The 22nd
ACM Workshop on Hot Topics in Networks (HotNets "23). ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3626111.3628199

1 INTRODUCTION

The cost of launching payloads to space has sharply
decreased, from $88K! per kilogram in 1981 on the Space
Shuttle to just $1.4K on SpaceX’s Falcon Heavy today [1].
Thus, private and government organizations are launching
spacecraft at an exponentially increasing rate [2], aiming
to create large satellite constellations that support a variety
of use cases from Internet connectivity [3-5], real-time
imaging [6, 7], blockchain processing [8, 9], to wireless
power delivery [10]. Taking advantage of the decreased
launch cost, constellations in low-earth orbit (LEO) such
as Starlink have proven capable of providing significant
performance and latency gains over traditional satellites in
geostationary orbit [11]. As a consequence, LEO communi-
cations constellations have also attracted significant recent
interest in the networking research community [11-17].
Minimizing the cost of each satellite in the constellation
is a key concern to operators, and low-cost SmallSats below
1,200kg strike an ideal balance between cost and function-
ality [18]. However, the unique challenges of computing in

!Normalized to 2023 dollars.

https://doi.org/10.1145/3626111.3628199
https://doi.org/10.1145/3626111.3628199

HotNets ’23, November 28-29, 2023, Cambridge, MA, USA

a space environment restrict the choice of chips onboard
satellites. Without the protection of Earth’s atmosphere and
magnetic field, missions traditionally employ specialized,
radiation-hardened hardware. Due to the niche market for
such chips, these computers are orders of magnitude more
costly than their commodity counterparts [19]. This high
cost is untenable for many emerging LEO use cases.

Making matters worse, as shown in Table 1, such chips
boast woefully underpowered compute power, since radia-
tion hardening requirements drive down clock speed and
increase die areas [20]. Furthermore, recent advances in
satellite communications such as 100Gbps data links [21]
require compute capabilities far beyond those supported
by hardened chips. Clearly, the demand for highly capable
local compute in space cannot be met solely by radiation-
hardened hardware [22]. Even worse, radiation-hardened
hardware often requires non-mainstream operating sys-
tems and toolchains sometimes a decade out of date [23].
Missions are further restricted by thermal requirements
to using low-power computers that do not generate much
heat. These engineering decisions decrease developer
productivity and greatly increase mission costs [24].

Thus, many SmallSat operators have decided to use Linux
on commodity hardware (e.g. Raspberry Pi) due to cost and
compute constraints [25-28]. Even far costlier space mis-
sions, such as flagship NASA missions, have started using
commodity hardware due to its exponentially better perfor-
mance. For example, the Ingenuity Mars Helicopter uses 2
Snapdragon 801s running Linux [29], and there are plans to
use it for complex image processing tasks [30]. This trend
of shifting from special-purpose to commodity hardware re-
sembles how large-scale cloud infrastructure began on com-
modity servers instead of specialized HPC nodes [31, 32].

However, commodity hardware can encounter silent data
corruption or even be damaged due to radiation errors [33].
This may cause outages or degradation of essential services
[34] such as Internet or GPS [35]. Restoring these services
can be very expensive, as new satellites need to be rebuilt
and relaunched to replace the damaged ones.

Vision. Our vision is to democratize the use of commod-
ity hardware in space by introducing purely software-based
fault tolerance techniques to commodity computers, with
the goal of matching the fault tolerance of their radiation-
hardened counterparts. We hope to do so with minimal mod-
ifications to the host OS and without using custom hard-
ware, minimizing developer friction [30]. This will further
drive down the cost of launches and allow spacecraft to uti-
lize state-of-the-art processors and accelerators (e.g. for on-
board packet processing or network functions).

Error types. Two primary types of errors prevent the
usage of commodity hardware in space networking in-
frastructure. The first error type is single-event latchups

H. Wang et al.

(SELs), which are localized short-circuits that can burn
out the device, potentially destroying the computer [36].
These errors can occur at any time and may show up only
as a very small increase in current draw, making them
very difficult to detect. The second scenario is single-event
upsets (SEUs), which are radiation-induced bit flips that
can cause crashes, hangs, and silent data corruption [36].
Such errors can happen at any time and affect even pro-
tected memory, making them very hard to defend against
at a software level. The common approach of redoing
computations is often expensive due to power and thermal
constraints in space. From conversations with satellite and
spacecraft operators, these radiation errors are the primary
barrier preventing spacecraft from replacing the aging
radiation-hardened processors onboard with faster, cheaper
commodity hardware [26, 30].

Previous efforts. Previous work has examined the risks of
radiation errors on satellite Internet infrastructure [35, 37],
but these have often centered on letting the affected satel-
lite fail and having the network adapt to the failure, rather
than catching the issue and preventing the failure in the
first place. State-of-the-art software methods include setting
a maximum current draw before power cycling the device
and simply re-running target programs and ensuring the
outputs match. However, these approaches are costly and
treat the hardware and software as a black box.

Preliminary fault tolerance techniques. We note that not
all missions have the same risk sensitivities and may be will-
ing to trade some risk for higher performance. Thus, we
design a set of techniques that allow flexible trade-offs be-
tween overhead and correctness guarantees.

We first introduce an SEL detection system that uses sys-
tem metrics available to the OS to detect when current draw
is higher than expected. Our main insight is that visibility
into resource usage (e.g. CPU, memory, I/O) extracted via
performance counters can significantly increase the detec-
tion rate of these errors with much less system overhead. We
thus introduce a noninvasive method that uses these metrics
to model expected current draw (§3.1).

Next, we introduce tunable double modular redundancy,
a novel method to ensure correctness in programs vulner-
able to SEUs. Our key idea is that not all SEUs are equal,
and some bits will affect program outputs more than oth-
ers. Therefore, protecting just the critical bits will provide
strong correctness guarantees. We introduce a redundancy
scheme using this idea that can be tuned to various accuracy
and detection rates to adapt to different missions (§4.1). We
also use this insight to create a metric for evaluating how
SEUs may alter the final result of a computation (§4.2).

Finally, we note that missions need to ensure memory in-
tegrity since commodity computers often do not have hard-
ware ECC. Our key idea is that spacecraft often do not make

Mars Attacks!

use of dedicated onboard accelerators, as their use cases may
not be applicable to spaceflight. Thus, we design a memory
scrubber that can run on these underutilized accelerators,
such as DSP coprocessors (§4.1).

We plan to validate these techniques in real space mis-
sions operated by our two partners: NASA-JPL and Cryp-
toSat [26, 30]. In conclusion, we believe that by addressing
the main causes of radiation errors with software fault tol-
erance techniques, commodity hardware can be safely de-
ployed in space, thereby significantly reducing the cost and
increasing the capabilities of satellites and spacecraft.

2 RADIATION HAZARDS IN SPACE

Ionizing radiation in space has three sources: galactic
cosmic rays, solar radiation, and protons trapped in Earth’s
magnetic field [38]. Cosmic rays are fast, energetic particles
originating from outside the Solar System. The Sun steadily
releases charged particles in the solar wind and periodically
releases stronger radiation bursts in solar particle events.
Particles can also be trapped in Earth’s magnetic field,
forming Van Allen radiation belts around the planet.

Radiation on Earth. As Earth’s atmosphere and magnetic
field deflect or absorb most highly-charged radiation par-
ticles, radiation hardening is not a significant concern for
computers on Earth, though cosmic rays and solar particle
events occasionally cause errors [39]. However, satellites in
orbit have less protection from Earth’s atmosphere and are
affected by trapped protons in the magnetosphere and so-
lar particle events. Beyond Earth’s orbit, computer systems
require protection against cosmic rays and Solar radiation.

Radiation in Space. Cosmic rays, solar radiation, and
trapped particles can all cause errors in chips, as modern
commodity chips are not designed with radiation hardening
in mind [40]. Shielding around the chip, the substances used
in the die, and the spectrum of ionizing radiation encoun-
tered in the environment are all important factors when
calculating the chances of a radiation error occurring [41].
Radiation can cause total ionizing dose effects, where the
semiconductor structure of the computer degrades as it is
exposed to radiation over time [42]. In contrast, our focus
is on transient effects, which cause temporary errors.

While it is difficult to predict when these radiation errors
will occur, such errors are the most common root cause of
software errors on spacecraft [43]. Thus, it is imperative for
space missions to understand how they manifest and defend
against them. We next examine two primary types of radia-
tion errors that spacecraft frequently encounter.

3 SINGLE EVENT LATCH-UPS

High-energy charged particles that impact transistor
structures may induce a single-event latch-up (SEL), which
is an erroneous transistor structure in the device that
effectively acts as a short-circuit [44]. SELs dissipate a large

HotNets ’23, November 28-29, 2023, Cambridge, MA, USA

concentration of energy on a few gates [45], generating
excess heat that cannot be dissipated in the vacuum of
space. This increases the temperature around these gates
significantly and damages the chip by destroying the gate
within around 3 minutes [26]. Fortunately, such an error
can be fixed immediately by simply power cycling the
affected device. However, detecting a latch-up in time
before it permanently damages the device is not trivial, and
consequently, latch-up errors have caused the loss of many
commercial SmallSats [26, 46].

SEL-induced additional current draw may be less than 5
mA [47], which is negligible compared to current variations
in modern CPUs due to power scaling, which, for example,
can reach over 4.5 A on a Raspberry Pi. Therefore, naive de-
tection solutions, such as triggering a reboot when a current
threshold is exceeded, can incur many false positives due to
natural variations in the processor’s current draw. On the
other hand, if the current threshold is set too high, the in-
crease in false negatives risks the safety of the satellite.

3.1 Methods

Prior methods. Previous work in detecting and mitigating
SELs use cheap current monitoring chips, which are triv-
ial to integrate into spacecraft [26], to record the current
draw of the entire flight computer as a black box [47]. De-
tection algorithms are then used to search for variations in
current draw [47], which are often much smaller than vari-
ations due to normal operations such as cycling between
power states [48]. This often leads to algorithms that emit
either too many false positives or too many false negatives,
affecting uptime and reliability.

Our method: utilize software-extractable features. Our in-
sight is that instead of treating the entire compute stack as
a black box, we can extract features accessible to the OS
(and even in userspace) about the computer’s operations to
model the current draw. This can be done using system met-
rics, such as per-core CPU utilization, memory capacity, and
memory bandwidth usage, or even more granular metrics,
such as cache miss rates, extracted from the CPU’s perfor-
mance counters. Profiling of the program under test may
also allow more insight into the current draw behavior of
the CPU. Such visibility into the system will give us addi-
tional insight into program behavior that can better inform
our SEL detection algorithm.

Preliminary work. Preliminary experiments suggest that
incorporating system-level metrics extracted by software
may significantly boost SEL detection efficacy. For example,
CPU usage is highly correlated with current draw on a
Raspberry Pi, a low-cost commodity single-board computer
found onboard many SmallSats [26]. This correlation can
be seen in Figure 1, where memory bandwidth and CPU
compute was stress tested. The CPU stress test starts one

HotNets ’23, November 28-29, 2023, Cambridge, MA, USA

11 ———- CPU Utilization e

Memory Utilization
—— Current Draw

& 5 5
Current (Amperes)

o
o

°
'S

H 1

) ; ; \-n,u ; v (TR 0.0
0 10 20 30 40 50 60

Time (seconds)

Figure 1: Example of CPU usage, memory percentage,
and current draw over time under CPU and memory
bandwidth stress test.

worker per core, each of which loops through a set of
matrix operations, including multiplication, transposition,
and addition. The memory stress test also starts one worker
per core, allocates some amount of memory, and writes
and reads from that portion repeatedly. As shown, the
stress tests cycle between using 0, 1, 2, 3, and 4 cores on
the chip, with the memory stress test cycling at an offset
from the CPU stress test’s usage. Across the data collected
from multiple trials of similar experiments, the correlation
between CPU usage and current draw was 99.9%.

We plan to collect further data both on the ground with
our testbed, described in §3.2, and in flight with Cryptosat
and JPL. We also collect real-world traces from our partners,
as they have monitoring chips built into their spacecraft that
can report the computer’s current draw.

SEL detector. We present one possible approach using
data collected from the testbed and the traces to detect latch-
up events. This tool will run in the background of a Linux
computer as a user-mode daemon and continuously record
key system statistics. These statistics will be continuously
tested against an algorithm such as elliptic envelope [49]
that would be trained on the collected data. As seen in Fig-
ure 1, modern CPUs often record spikes in current draw,
which may cause a false positive in the detection algorithm.
Thus, the tool will normalize these current spikes by having
the detection algorithm match against a moving window of
the last 30 seconds of data. Once a suspected SEL is detected,
we force a power cycle to restore the device to normal op-
eration. We plan to explore various anomaly detection and
ML algorithms and compare their efficacy and overhead.

3.2 Testing Methods

On Earth, SELs can be induced with specialized X-ray or pro-
ton beam machines [22]. CryptoSat [50] is currently using
Raspberry Pi’s as their flight computer and has allowed us
to collect SEL data and test our mitigations in orbit. These

H. Wang et al.

tests are expensive and time-consuming and cannot provide
a complete picture of radiation effects on software. Thus, we
will need low-cost testbeds to test the effectiveness of our
mitigations without the need for specialized instruments.

SEL testbed. We develop a testbed using cheap commod-
ity parts to measure the current supplied to a Raspberry
Pi board. Current data can be retrieved through the I12C
interface on the Raspberry Pi. In order to simulate a
latch-up, we used a USB device that can draw a variable
amount of current as determined by the user. As we
focus on software-based mitigations, the exact hardware
configuration of a latch-up will not need to be recreated.
This allows us to simulate latch-ups with varying degrees
of additional current draw.

To generate data that corresponds to typical SmallSat
use cases, we run various benchmarks common in scientific
computing, flight software, and image and video processing.
These include common operations from sklearn, FFTW,
AV1, OpenJPEG, and OpenCV; and space-specific tasks
from timing, location [51] and astrodynamics [52] libraries.

4 SINGLE-EVENT UPSETS

Single-event upsets (SEUs) are transient changes in a
circuit’s logical state caused by ionizing radiation striking
the electronic device [53]. Most SEUs result in a single
bit flip in memory or a spurious 1 signal traveling down
a compute pipeline [44]. Anecdotally, a flight software
error causing data loss on the Perseverance Mars rover
has been traced to a radiation upset and has put a pause
on multiple days of rover operations [30]. During regular
operations, a hardened CPU on Perseverance records
around one correctable SEU each Martian Sol (24.7 hours),
and a non-hardened Snapdragon 801 onboard has recorded
at least 4 SEUs in the past 800 Sols [30]. Simulations using
a well-known radiation effects analysis toolkit [41] show
that the chance of a SEU on the Snapdragon 801 is roughly
1.578 x 107° per bit, per day.

SEUs may affect different components of a non-hardened
computer onboard a spacecraft. An SEU striking a compute
pipeline can lead to incorrect data in a register [54], which
can cause silent data corruption, crashes, or hangs. SEUs
hitting RAM may cause similar errors when the data is
processed. These errors may ultimately result in malformed
packets being relayed through the network, or even corrupt
transferred data in an undetectable way. As for data at rest,
standard flash chips often found on spacecraft computers
usually have built-in ECC which can detect and correct
for SEUs. Therefore, due to the lack of any ECC mecha-
nisms, even for single-bit errors, we assume that compute
pipelines, cache, and main memory will be the primary
sources of application-visible failures in a commodity
computer used in space, and are thus our primary focus.

Mars Attacks!

Assumptions. Since errors can affect every component of
the system (even the wires!), we must assume unfortunately
that not all errors can be corrected. We therefore identify
best-effort mechanisms that can dramatically decrease the
impact of application-visible effects caused by SEUs with-
out inccuring a significant performance penalty.

For many local compute use cases in space, such as navi-
gation and communication, computations can simply be re-
done if an error is detected [55]. Thus, we focus primarily on
detection and prevention techniques rather than error cor-
rection. Observational data from Perseverance has shown
only one radiation error affecting multiple bits for its en-
tire 25-year lifespan [30]. We therefore focus on single-bit
rather than multi-bit errors. Finally, despite what the title of
this paper may suggest, we assume a non-adversarial fault
model and focus on protection from random errors.

Due to the unique operating conditions of spacecraft, on-
board computers are very constrained in their power usage
and heat generation. As spacecraft batteries are limited and
solar panels often do not output more power than the space-
craft draws, the power available to onboard computers are
often very small [30], driving down available compute time.
Furthermore, the vacuum of space does not allow comput-
ers to use convection to cool themselves, making thermal is-
sues a major priority. Therefore, minimizing overhead, even
at the cost of some reliability, may be a worthwhile compro-
mise for spacecraft operators.

4.1 Methods

Prior methods. Early work in the SmallSat field introduced
some naive solutions to mitigate SEUs. Industry’s (expen-
sive) mitigation treats the program to protect as a black box
and runs it in double modular redundancy (DMR) with a
hardened, dedicated ECC controller [56, 57]. As DMR dupli-
cates every operation, it incurs at least double the runtime
cost or even more if the CPU throttles due to heat.

Our approach. Our key insight is that fine-grained pro-
gram behaviors, such as control and data flow, can be used
to detect SEUs. We introduce tunable DMR, which ensures
control and data flow integrity using compile-time instru-
mentation. These approaches can be fine-tuned to strike a
balance between overhead and accuracy from just validat-
ing control flow to running in full DMR. We also introduce
a software implementation of memory ECC running on un-
derused accelerators that ensures the integrity of data stored
in memory. These methods will protect data in use and in
memory with significantly less overhead than current state-
of-the-art methods.

Control flow integrity. Our key idea is that software pro-
grams often differ in control flow depending on whether
the program completes without errors. We note that control
flow within a function is determined by branch instructions,

HotNets ’23, November 28-29, 2023, Cambridge, MA, USA

whose behavior is governed by its operand values. There-
fore, in order to protect control flow, these are the critical
values we will need to protect. As these values are a subset
of all values in the program, we may not need to redo the en-
tire computation to validate the correctness of control flow.
Furthermore, we can create much lighter detection methods
than traditional control flow integrity, as we are not expect-
ing an adversarial fault model.

We can extract the aforementioned critical values by
traversing the control flow graph (CFG) of the program
and noting the values used in each transition. We can then
extract the set of instructions that determine these values
by traversing the use-def tree in reverse order. This list
of critical values enables us to create a reference monitor
that replicates only these instructions. The reference
monitor can then be run in parallel with the full program
or afterward to validate the control flow. If we run both
the monitor and the program in parallel, we will not need
to record state transitions while running the full program.
However, if we run the monitor after the full program, we
minimize the overhead from context switching and IPC
needed when running the program.

We can modify the level of integrity provided based on
mission requirements such as overhead and tolerance to er-
rors. For example, we can choose to verify only that the tran-
sitions between basic blocks are correct rather than ensur-
ing that the whole path is in scope. We may further improve
performance by verifying transitions only between strongly
connected components in the control-flow graph.

Running the reference monitor with the full program will
allow us to verify that each state transition is correct while
incurring less cost than running the full program twice. This
method will detect any silent data corruption causing a de-
viation in control flow. As control flow is often dependent
on the correctness of the program’s data, this verification
step will therefore provide a reasonable guarantee that the
program executes correctly while minimizing the extra com-
putation being done and keeping additional power draw and
heat generation down.

Data flow integrity. Silent data corruption, an exception-
ally challenging error to detect, may be missed by control
flow integrity. As DMR is prohibitively expensive, we need
a method to detect silent data corruptions that significantly
alter output without doubling the overhead. Our key insight
here is that not all SEUs affect the computation results
equally, and only SEUs in specific bits cause large errors in
the output. Therefore, if we can protect these specific bits,
we may safely ignore bit flips elsewhere, as the differences
in the end result will be minimal.

As a case study, we examine how to protect floating-point
multiplication and division, which are expensive compared
to integer or logical operations, with less overhead than

HotNets ’23, November 28-29, 2023, Cambridge, MA, USA

DMR. These operations are commonly used in many
spacecraft workloads and can tolerate some error in the
result. An SEU in a float results in relative errors up to
22" when an exponent bit is hit, 200% if the sign bit is hit,
and 50% if a mantissa bit is hit. Therefore, we can detect
significant errors while minimizing overhead by protecting
just the exponent and sign bits. We can further tune our
method to protect a number of bits in the mantissa until we
reach an acceptable margin of error.

This motivates us to apply quantization techniques [58] to
our validation tool. Such techniques leverage the fact that
most CPUs can operate faster on integers than on floating-
point data to speed up calculations. In this use case, we use
quantization to efficiently verify that the program output
matches the order of magnitude of the ground truth. We first
create a similar use-def chain as in our control flow integrity
approach, but only select values that affect the final result.
We convert the selected floating-point values into an integer
representation of their order of magnitude and calculate the
expected order of magnitude of the result based on the oper-
ations done to the values of the original program. We then
validate that the orders of magnitude before and after the
operations match the expected value.

Due to CPU characteristics, calculating this order of mag-
nitude approach is faster than DMR. For example, on the
ARM Cortex-A53 architecture, integer operations take up
to just 2 cycles, while floating-point ones will need up to 7
cycles. Orders of magnitude can be calculated in just 1 cycle.

Coprocessor-based software ECC. In order to ensure that
data stored in memory has not been affected by SEUs, space-
craft have traditionally used ECC schemes implemented
in hardware [59]. However, modern low-power SoCs lack
hardware error-correction codes, and running a software
implementation of software ECC may be prohibitively
expensive. For example, a benchmark on a Snapdragon 801
shows that verifying 2GB of memory using a software BCH
coding scheme takes over 7 minutes of valuable CPU time.

We note that many of these general-purpose SoCs pro-
vide hardware accelerators to meet a variety of use cases,
but they are often left unused in spacecraft. However, some
of these accelerators have been shown to be capable of doing
common ECC tasks [60]. Thus, we propose using these idle
accelerators as software ECC, which would ensure memory
integrity without visible overhead to spacecraft operators.

As a case study, we examine how the Hexagon DSP
onboard Qualcomm Snapdragon SoCs can support efficient
soft ECC on non-ECC memory. These SoCs act as the flight
computer for many missions, including Mars rovers [29]
and LEO SmallSats [27]. The DSP has access to all memory
on the SoC, just as the CPU does. However, it does not have

H. Wang et al.

an understanding of the kernel’s page table and therefore
will not be able to run on pages without kernel support.

Therefore, we will pair a kernel module with a page veri-
fier on the DSP. On startup, the kernel module will reserve
an area of memory for checksums to be stored. It will then
schedule pages stored in memory to checksum and pass the
physical page address to the memory page verifier running
on the DSP. The DSP can then retrieve the page, verify page
integrity, and make repairs as needed.

Due to computational limitations on space-bound com-
modity computers, it is impractical and expensive to con-
stantly cycle through the entire memory space. There may
be a significant amount of time in between cycles where a
SEU may sneak in undetected. Thus, we need to focus on the
integrity of pages that will affect the final result of a com-
putation. One method may be to schedule pages to be veri-
fied in least recently used order, as these pages have been in
memory the longest and are thus more likely to contain an
error. Another approach may involve using program traces
to predict which pages will be accessed next and scheduling
these pages for verification first. The verifier will also take
advantage of built-in correctness checks within programs to
detect errors in unscanned pages.

4.2 Testing Methods

The Perseverance Mars rover currently has a commodity
computer onboard [29], which we use to collect data on
the radiation environment on Mars. As data transmission to
Mars is expensive and time-consuming and cannot provide
a full model of the SEU rates, we also introduce alternative
techniques to test programs’ vulnerability to SEUs.

QEMU fault injection tool. Due to the random nature of
radiation errors and the limited availability of data from
space systems, we need a sufficiently accurate experimen-
tal framework that can inject errors into different compo-
nents of a computer. Though architectural simulators offer
better fidelity into cache and CPU pipeline behavior [61],
even simple tasks like booting Linux can take minutes. This
makes testing applications extremely tedious. In contrast,
an instruction-level emulator like QEMU has a simpler uni-
fied memory model that boots Linux in seconds. However,
as QEMU is not cycle-accurate, faults can only be injected
between instructions rather than between cycles [62]. As
we are primarily concerned with how errors impact compu-
tations, QEMU’s granularity satisfies our needs.

We implement a QEMU simulation framework for tran-
sient radiation errors. We assume a radiation environment
similar to that of normal LEO operations, with about 1 SEU
per day. The framework pauses the execution of the system
emulation at a selected time, and uses GDB to modify regis-
ter and memory contents in the emulated system.

Mars Attacks!

Risk
Analysis
Tools

I I
| | | |

soc | SPY || CPYU | cache | | RAM
Pipeline | |Pipeline

I []
LI]

Tunable Double
Modular
Redundancy

Figure 2: Diagram of processor components protected
by each proposed system.

To model a cache, we use QEMU’s cache plugin, which
instruments memory accesses and records locations that
would be stored in a cache [63]. We extend QEMU’s monitor
interface, which takes user input to do complex tasks such
as mounting devices or taking snapshots of the virtual
machine [64], to allow QEMU’s cache plugin to return
addresses that are located in cache or in memory.

LLVM risk analysis pass. While the QEMU-based ap-
proach provides useful error traces, it cannot trace through
all execution paths and provide an upper bound on the
erroneous result. In contrast, our risk analysis tool runs a
control and data flow analysis of the target program and
returns an error rating for each value, which quantifies the
vulnerability of that value to a bit flip elsewhere.

The tool also accounts for how data is represented ar-
chitecturally, producing a much more accurate error model
than working with the data types at a high level. We do so
by assigning a logarithmic error rating to each value repre-
senting the effect of a worst-case bit flip. For example, the
maximum error of a 64-bit integer type is 2%4, so its error rat-
ing is 64. Similarly, the maximum error of a 64-bit float oc-
curs when the most significant bit of the exponent is flipped,
resulting in an error of 21%%4, so its error rating is 1024.

We then note that there are five primary mathematical op-
erations on values that modify error ratings. The maximum
error in addition and subtraction is the larger maximum er-
ror of the two operands. Thus, the error rating of such an
operation is the greater of the two operands’ error ratings.
Similarly, the error rating of a multiplication or division op-
eration is the sum of the two operands’ error ratings. Finally,
the maximum error of a modulo operation occurs when the
divisor is flipped to a very large value, at which point the div-
idend becomes the result. Thus, the error rating of a modulo
operation is the error rating of the first operand. As we are
interested in worst-case error behavior, we can set the error
rating of phi nodes to the largest of the incoming values.

Setting where we assign initial error ratings and what our
final output value is to the endpoints of a code segment can
provide us with error ratings that describe how vulnerable
a piece of code is to SEUs at the basic block, strongly con-
nected component (SCC), or function level. While such an

HotNets ’23, November 28-29, 2023, Cambridge, MA, USA

approach does not account for error propagation in loops,
this analysis is granular enough to still provide insight into
error behaviors during each iteration of the loop.

5 CONCLUSIONS

Due to cost and compute requirements, LEO satellite opera-
tors are starting to use low-cost, commodity computers on-
board spacecraft. These computers are susceptible to radia-
tion errors that can damage the computer or produce incor-
rect results. We introduce a set of software-based methods,
shown in Figure 2, that extract information about the soft-
ware and hardware stack to mitigate and detect such errors.
We also develop testbeds on Earth and in space to test these
approaches in real-world conditions.

ACKNOWLEDGMENTS

A portion of this research was carried out at the Jet Propul-
sion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Adminis-
tration (80NM0018D0004). This work was supported by the
Department of Defense (DoD) through the National Defense
Science & Engineering Graduate (NDSEG) Fellowship Pro-
gram. The authors would like to thank Andrew Schmidt of
the Information Sciences Institute, John Parsons of Nevis
Laboratories, and Lucas Saldyt, Andrei Tumbar, Cel Skeggs,
Steven Guertin, and Doug Sheldon of the Jet Propulsion Lab-
oratory for their input on this work.

REFERENCES

[1] H.Jones. “The recent large reduction in space launch
cost”. In: 48th International Conference on Environ-
mental Systems. 2018.

[2] A. C. Boley and M. Byers. “Satellite mega-
constellations create risks in Low Earth Orbit,
the atmosphere and on Earth”. In: Scientific Reports
11.1 (2021), pp. 1-8.

[3] Starlink. 2023. urL: https://www.starlink.com/.

[4] Z.Quetal “LEO satellite constellation for Internet of
Things”. In: IEEE access 5 (2017), pp. 18391-18401.

[5] J. Gedmark and S. Smith. The Evolution of the Satellite
Economy. Andreessen Horowitz. al6z Podcast, Sept.
2023. URL: https://al6z.com/podcast/the-evolution-o
f-the-satellite-economy.

[6] Planet. 2023. urL: https://www.planet.com/.

Spire. 2023. URL: https://spire.com/.

Filecoin Foundation and Lockheed Martin Bring Decen-

tralized Storage to Space. May 2022. UrL: https://filec

oinfoundation.medium.com/filecoin-foundation-an
d-lockheed-martin-bring-decentralized-storage-to-s
pace-db9a15e66264.

[9] Y. Michalevsky and Y. Winetraub. “WaC: SpaceTEE-
Secure and Tamper-Proof Computing in Space using

— r—
[e RN |
—_—

https://www.starlink.com/
https://a16z.com/podcast/the-evolution-of-the-satellite-economy
https://a16z.com/podcast/the-evolution-of-the-satellite-economy
https://www.planet.com/
https://spire.com/
https://filecoinfoundation.medium.com/filecoin-foundation-and-lockheed-martin-bring-decentralized-storage-to-space-db9a15e66264
https://filecoinfoundation.medium.com/filecoin-foundation-and-lockheed-martin-bring-decentralized-storage-to-space-db9a15e66264
https://filecoinfoundation.medium.com/filecoin-foundation-and-lockheed-martin-bring-decentralized-storage-to-space-db9a15e66264
https://filecoinfoundation.medium.com/filecoin-foundation-and-lockheed-martin-bring-decentralized-storage-to-space-db9a15e66264

HotNets ’23, November 28-29, 2023, Cambridge, MA, USA

[10]

[11]

[12]

[13]

[19]

[20]

[21]

CubeSats”. In: Proceedings of the 2017 Workshop on At-
tacks and Solutions in Hardware Security. 2017, pp. 27—
32.

A. Fikes et al. “The Caltech space solar power project:
Design, progress, and future direction”. In: Proc. IEEE
WISEE Space Sol. Power Workshop. 2022.

F. Michel et al. “A first look at starlink performance”.
In: Proceedings of the 22nd ACM Internet Measurement
Conference. 2022, pp. 130-136.

J. Bao et al. “OpenSAN: A software-defined satellite
network architecture”. In: ACM SIGCOMM Computer
Communication Review 44.4 (2014), pp. 347-348.

D. Bhattacherjee et al. “Gearing up for the 21st cen-
tury space race”. In: Proceedings of the 17th ACM
Workshop on Hot Topics in Networks. 2018, pp. 113—
119.

S. Kassing et al. “Exploring the “Internet from space”
with Hypatia”. In: Proceedings of the ACM Internet
Measurement conference. 2020, pp. 214-229.

A. Singla. Satnetlab: a call to arms for the next global
internet testbed. 2021.

D. Perdices et al. “When satellite is all you have:
watching the internet from 550 ms”. In: Proceedings of
the 22nd ACM Internet Measurement Conference. 2022,
pp- 137-150.

M. M. Kassem et al. “A browser-side view of starlink
connectivity”. In: Proceedings of the 22nd ACM Inter-
net Measurement Conference. 2022, pp. 151-158.

J. R. Wertz et al. “Methods for Achieving Dramatic Re-
ductions in Space Mission Cost”. In: Reinventing Space
Conference. 2011, pp. 2—6.

B. Yost et al. “State-of-the-art small spacecraft tech-
nology”. In: (2021).

L. Burcin. “Rad750 experience: The challenge of SEE
hardening a high performance commercial proces-
sor”. In: Microelectronics Reliability & Qualification
Workshop (MRQW). 2002.

C. M. Schieler et al. “On-orbit demonstration of 200-
Gbps laser communication downlink from the TBIRD
CubeSat”. In: Free-Space Laser Communications XXXV.
Vol. 12413. SPIE. 2023, p. 1241302.

S. M. Guertin. “Radiation effects on ARM devices”. In:
(2019).

E. Birrane et al. “Linux and the spacecraft flight soft-
ware environment”. In: (2007).

V. Verma and C. Leger. “SSim: NASA Mars rover
robotics flight software simulation”. In: 2019 IEEE
Aerospace Conference. IEEE. 2019, pp. 1-11.

H. Leppinen. “Current use of Linux in spacecraft
flight software”. In: IEEE Aerospace and Electronic Sys-
tems Magazine 32.10 (2017), pp. 4-13.

[40]

[41]

H. Wang et al.

Private correspondence with LEO SmallSat operator.
2022.

J. Bosch-Lluis et al. “The Smart Ice cloud sensing
(Smices) SmallSat Concept”. In: (2020).

D. Selva and D. Krejci. “A survey and assessment of
the capabilities of Cubesats for Earth observation”. In:
Acta Astronautica 74 (2012), pp. 50-68.

B. Balaram et al. “Mars helicopter technology demon-
strator”. In: 2018 AIAA Atmospheric Flight Mechanics
Conference. 2018, p. 0023.

Private correspondence with space agency. 2022.

S. Ghemawat, H. Gobioff, and S.-T. Leung. “The
Google file system”. In: Proceedings of the nine-
teenth ACM symposium on Operating systems princi-
ples. 2003, pp. 29-43.

J. Dean and S. Ghemawat. “MapReduce: simplified
data processing on large clusters”. In: Communica-
tions of the ACM 51.1 (2008), pp. 107-113.

V. Nwankwo, N. N. Jibiri, and M. T. Kio. “The impact
of space radiation environment on satellites opera-
tion in near-Earth space”. In: Satellites Missions and
Technologies for Geosciences (2020).

S. Ma et al. “Network Characteristics of LEO Satellite
Constellations: A Starlink-Based Measurement from
End Users”. In: arXiv preprint arXiv:2212.13697 (2022).
S. A. Jyothi. “Solar superstorms: planning for an in-
ternet apocalypse”. In: Proceedings of the 2021 ACM
SIGCOMM 2021 Conference. 2021, pp. 692-704.

G. S. Rodrigues et al. “Analyzing the impact of fault-
tolerance methods in ARM processors under soft er-
rors running Linux and parallelization APIs”. In: IEEE
Transactions on Nuclear Science 64.8 (2017), pp. 2196—
2203.

Y. Li et al. “A case for stateless mobile core network
functions in space”. In: Proceedings of the ACM SIG-
COMM 2022 Conference. 2022, pp. 298-313.

W. Schimmerling. “The space radiation environment:
an introduction”. In: The Health Risks of Extraterres-
trial Environments (2011).

A. A.Hwang, 1. A. Stefanovici, and B. Schroeder. “Cos-
mic rays don’t strike twice: Understanding the nature
of DRAM errors and the implications for system de-
sign”. In: ACM SIGPLAN Notices 47.4 (2012), pp. 111-
122.

S. M. Guertin et al. “Recent SEE results for Snap-
dragon processors”. In: 2019 IEEE Radiation Effects
Data Workshop. IEEE. 2019, pp. 1-5.

B. D. Sierawski et al. “CREME-MC: A physics-based
single event effects tool”. In: IEEE Nuclear Science
Symposuim & Medical Imaging Conference. IEEE. 2010,
pp. 1258-1261.

Mars Attacks!

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[50]

[51]

[52]

(53]

A.]. Tylka et al. “CREME96: A revision of the cosmic
ray effects on micro-electronics code”. In: IEEE Trans-
actions on Nuclear Science 44.6 (1997), pp. 2150-2160.
R. Ecoffet. “Overview of In-Orbit Radiation Induced
Spacecraft Anomalies”. In: IEEE Transactions on Nu-
clear Science 60.3 (2013), pp. 1791-1815. por: 10.1109
/TNS.2013.2262002.

J. A. Pellish. Radiation 101: Effects on Hardware and
Robotic Systems. Tech. rep. 2015.

D. M. Hassler et al. “The radiation assessment de-
tector (RAD) investigation”. In: Space science reviews
170.1 (2012), pp. 503-558.

K. L. Bedingfield and R. D. Leach. Spacecraft sys-
tem failures and anomalies attributed to the natural
space environment. Vol. 1390. National Aeronautics
and Space Administration, Marshall Space Flight Cen-
ter, 1996.

A. Dorise et al. “Machine learning as an alternative to
thresholding for space radiation high current event
detection”. In: 2021 21th European Conference on Ra-
diation and Its Effects on Components and Systems
(RADECS). IEEE. 2021, pp. 1-7.

Y. Wang et al. “Hertzbleed: Turning Power Side-
Channel Attacks Into Remote Timing Attacks on x86”.
In: 31st USENIX Security Symposium (USENIX Security
22). 2022, pp. 679-697.

P. J. Rousseeuw. “Least median of squares regres-
sion”. In: Journal of the American statistical associa-
tion 79.388 (1984), pp. 871-880.

Crypto-satellites that power blockchain and cryptogra-
phy. 2023. URL: https://www.cryptosat.io/.

C. H. Acton Jr. “Ancillary data services of NASA’s
navigation and ancillary information facility”. In:
Planetary and Space Science 44.1 (1996), pp. 65-70.

D. E. Gaylor, T. Berthold, and N. Takada. “Java As-
trodynamics Toolkit (JAT)”. In: Advances in the As-
tronautical Sciences 121 (2005), pp. 263-272.

E. Normand. “Single-event effects in avionics”. In:
IEEE Transactions on nuclear science 43.2 (1996),
pp. 461-474.

N. J. Wang, J. Quek, T. M. Rafacz, et al. “Charac-
terizing the effects of transient faults on a high-
performance processor pipeline”. In: International
Conference on Dependable Systems and Networks, 2004.
IEEE Computer Society. 2004, pp. 61-61.

W. M. Owen Jr. “Methods of optical navigation”. In:
(2011).

A. G. Schmidt, M. French, and T. Flatley. “Radiation
hardening by software techniques on FPGAs: Flight
experiment evaluation and results”. In: 2017 IEEE
Aerospace Conference. IEEE. 2017, pp. 1-8.

HotNets ’23, November 28-29, 2023, Cambridge, MA, USA

(57]

(60]

C. A. Skeggs. “Vivid: An Operating System Kernel for
Radiation-Tolerant Flight Control Software”. MA the-
sis. Massachusetts Institute of Technology, 2022.

C. Zhu et al. “Trained ternary quantization”. In: arXiv
preprint arXiv:1612.01064 (2016).

M. Reid and G. Ottman. “Software controlled mem-
ory scrubbing for the Van Allen probes solid state
recorder (SSR) memory”. In: 2014 IEEE Aerospace Con-
ference. IEEE. 2014, pp. 1-6.

S. Keskin and T. Kocak. “GPU accelerated gigabit
level BCH and LDPC concatenated coding system”.
In: 2017 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE. 2017, pp. 1-4.

J. Lowe-Power et al. “The gem5 simulator: Version
20.0+”. In: arXiv preprint arXiv:2007.03152 (2020).

M. Kaliorakis et al. “Differential fault injection on
microarchitectural simulators”. In: 2015 IEEE Interna-
tional Symposium on Workload Characterization. IEEE.
2015, pp. 172-182.

QEMU TCG Plugins. 2023. URL: https://www.qemu.or
g/docs/master/devel/tcg-plugins.html.

QEMU Monitor. 2023. UrL: https://www.qemu.org/do
cs/master/system/monitor.html.

https://doi.org/10.1109/TNS.2013.2262002
https://doi.org/10.1109/TNS.2013.2262002
https://www.cryptosat.io/
https://www.qemu.org/docs/master/devel/tcg-plugins.html
https://www.qemu.org/docs/master/devel/tcg-plugins.html
https://www.qemu.org/docs/master/system/monitor.html
https://www.qemu.org/docs/master/system/monitor.html

	Abstract
	1 Introduction
	2 Radiation Hazards in Space
	3 Single Event Latch-Ups
	3.1 Methods
	3.2 Testing Methods

	4 Single-Event Upsets
	4.1 Methods
	4.2 Testing Methods

	5 Conclusions
	Acknowledgments

